These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27627307)

  • 1. Dynamics of weakly coupled parametrically forced oscillators.
    Salgado Sánchez P; Porter J; Tinao I; Laverón-Simavilla A
    Phys Rev E; 2016 Aug; 94(2-1):022216. PubMed ID: 27627307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability diagram for the forced Kuramoto model.
    Childs LM; Strogatz SH
    Chaos; 2008 Dec; 18(4):043128. PubMed ID: 19123638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback.
    Sajid M; Sarwardi S; Almohaimeed AS; Hossain S
    Math Biosci Eng; 2023 Jan; 20(2):2874-2889. PubMed ID: 36899562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qualitative changes in phase-response curve and synchronization at the saddle-node-loop bifurcation.
    Hesse J; Schleimer JH; Schreiber S
    Phys Rev E; 2017 May; 95(5-1):052203. PubMed ID: 28618541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incoherent chimera and glassy states in coupled oscillators with frustrated interactions.
    Choe CU; Ri JS; Kim RS
    Phys Rev E; 2016 Sep; 94(3-1):032205. PubMed ID: 27739699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative dynamics in coupled systems of fast and slow phase oscillators.
    Sakaguchi H; Okita T
    Phys Rev E; 2016 Feb; 93(2):022212. PubMed ID: 26986336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.
    Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bistable chimera attractors on a triangular network of oscillator populations.
    Martens EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016216. PubMed ID: 20866716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow switching in globally coupled oscillators: robustness and occurrence through delayed coupling.
    Kori H; Kuramoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046214. PubMed ID: 11308937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex localization mechanisms in networks of coupled oscillators: Two case studies.
    Nicolaou ZG; Bramburger JJ
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38252783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary transverse instabilities in optical parametric oscillators.
    Ward H; Taki M; Glorieux P
    Opt Lett; 2002 Mar; 27(5):348-50. PubMed ID: 18007799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization between two weakly coupled delay-line oscillators.
    Levy EC; Horowitz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066209. PubMed ID: 23368026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collective vibrations of a hydrodynamic active lattice.
    Thomson SJ; Durey M; Rosales RR
    Proc Math Phys Eng Sci; 2020 Jul; 476(2239):20200155. PubMed ID: 32831612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a three species ratio-dependent food chain model with intra-specific competition within the top predator.
    Ali N; Haque M; Venturino E; Chakravarty S
    Comput Biol Med; 2017 Jun; 85():63-74. PubMed ID: 28460257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate.
    Lu M; Huang J; Ruan S; Yu P
    J Differ Equ; 2019 Jul; 267(3):1859-1898. PubMed ID: 32226129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability near threshold in a semiconductor laser subject to optical feedback: a bifurcation analysis of the Lang-Kobayashi equations.
    Green K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036210. PubMed ID: 19392038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Dynamics of a Susceptible-Infectious-Recovered Epidemic Model with a Generalized Nonmonotone Incidence Rate.
    Lu M; Huang J; Ruan S; Yu P
    J Dyn Differ Equ; 2021; 33(4):1625-1661. PubMed ID: 32837121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bogdanov-Takens bifurcation in a neutral BAM neural networks model with delays.
    Wang R; Liu H; Feng F; Yan F
    IET Syst Biol; 2017 Dec; 11(6):163-173. PubMed ID: 29125125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of coexisting rotating waves in unidirectional rings of bistable Duffing oscillators.
    Barba-Franco JJ; Gallegos A; Jaimes-Reátegui R; Muñoz-Maciel J; Pisarchik AN
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37433655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.