These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 27627333)
21. Rayleigh-Taylor instability in soft elastic layers. Riccobelli D; Ciarletta P Philos Trans A Math Phys Eng Sci; 2017 May; 375(2093):. PubMed ID: 28373388 [TBL] [Abstract][Full Text] [Related]
22. Surface instability of sheared soft tissues. Destrade M; Gilchrist MD; Prikazchikov DA; Saccomandi G J Biomech Eng; 2008 Dec; 130(6):061007. PubMed ID: 19045536 [TBL] [Abstract][Full Text] [Related]
23. Instability of Incompatible Bilayered Soft Tissues and the Role of Interface Conditions. Emuna N; Durban D J Biomech Eng; 2019 Oct; 141(10):. PubMed ID: 31017620 [TBL] [Abstract][Full Text] [Related]
24. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue. Nakamura Y; Kanbara R; Ochiai KT; Tanaka Y J Prosthet Dent; 2014 Oct; 112(4):972-80. PubMed ID: 24819523 [TBL] [Abstract][Full Text] [Related]
25. Surface Instability of Bilayer Hydrogel Subjected to Both Compression and Solvent Absorption. Zhou Z; Li Y; Guo TF; Guo X; Tang S Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966658 [TBL] [Abstract][Full Text] [Related]
26. Creasing of an everted elastomer tube. Liang X; Tao F; Cai S Soft Matter; 2016 Sep; 12(37):7726-7730. PubMed ID: 27722731 [TBL] [Abstract][Full Text] [Related]
27. Mechanical role of a growing solid tumor on cortical folding. Razavi MJ; Reeves M; Wang X Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1212-1222. PubMed ID: 28678541 [TBL] [Abstract][Full Text] [Related]
28. Surface buckling delamination patterns of film on soft spherical substrates. Emori K; Saito Y; Yonezu A; Zhu L; Liao X; Chen X Soft Matter; 2020 Apr; 16(16):3952-3961. PubMed ID: 32249882 [TBL] [Abstract][Full Text] [Related]
29. Palmar, plantar, and digital flexion creases: morphologic and clinical considerations. Schaumann BA; Kimura S Birth Defects Orig Artic Ser; 1991; 27(2):229-52. PubMed ID: 1786353 [TBL] [Abstract][Full Text] [Related]
30. Effects of strain artefacts arising from a pre-defined callus domain in models of bone healing mechanobiology. Wilson CJ; Schuetz MA; Epari DR Biomech Model Mechanobiol; 2015 Oct; 14(5):1129-41. PubMed ID: 25687769 [TBL] [Abstract][Full Text] [Related]
31. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (SSI) technique: inverse method, ex vivo and in vivo experiments. Jiang Y; Li GY; Qian LX; Hu XD; Liu D; Liang S; Cao Y Med Image Anal; 2015 Feb; 20(1):97-111. PubMed ID: 25476413 [TBL] [Abstract][Full Text] [Related]
32. Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain. Giammarinaro B; Coulouvrat F; Pinton G J Biomech Eng; 2016 Apr; 138(4):041003. PubMed ID: 26833489 [TBL] [Abstract][Full Text] [Related]
33. Morphological Diagram of Dynamic-Interfacial-Release-Induced Surface Instability. Lai YF; Chang MY; Liou YY; Lee CC; Hsueh HY ACS Appl Mater Interfaces; 2023 Aug; 15(32):38975-38985. PubMed ID: 37478376 [TBL] [Abstract][Full Text] [Related]
34. Electric-field-induced interfacial instabilities of a soft elastic membrane confined between viscous layers. Dey M; Bandyopadhyay D; Sharma A; Qian S; Joo SW Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041602. PubMed ID: 23214594 [TBL] [Abstract][Full Text] [Related]
35. Azimuthal field instability in a confined ferrofluid. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023020. PubMed ID: 25768610 [TBL] [Abstract][Full Text] [Related]
36. Finite element modeling of soft tissues: material models, tissue interaction and challenges. Freutel M; Schmidt H; Dürselen L; Ignatius A; Galbusera F Clin Biomech (Bristol); 2014 Apr; 29(4):363-72. PubMed ID: 24529470 [TBL] [Abstract][Full Text] [Related]
37. Towards an analytical model of soft biological tissues. Federico S; Herzog W J Biomech; 2008 Dec; 41(16):3309-13. PubMed ID: 18922533 [TBL] [Abstract][Full Text] [Related]
38. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Lappa M Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686 [TBL] [Abstract][Full Text] [Related]
39. Dynamic finite element modeling of poroviscoelastic soft tissue. Yang Z; Smolinski P Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152 [TBL] [Abstract][Full Text] [Related]
40. Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method. Yarahmadian M; Zhong Y; Gu C; Shin J Technol Health Care; 2018; 26(S1):317-325. PubMed ID: 29710758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]