These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27627361)

  • 1. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles.
    Klymko K; Geissler PL; Whitelam S
    Phys Rev E; 2016 Aug; 94(2-1):022608. PubMed ID: 27627361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids.
    Rex M; Löwen H
    Eur Phys J E Soft Matter; 2008; 26(1-2):143-50. PubMed ID: 18324352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of the laning transition in two dimensions.
    Glanz T; Löwen H
    J Phys Condens Matter; 2012 Nov; 24(46):464114. PubMed ID: 23114095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lane formation in oppositely charged colloids driven by an electric field: chaining and two-dimensional crystallization.
    Rex M; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051402. PubMed ID: 17677060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields.
    Wysocki A; Löwen H
    J Phys Condens Matter; 2011 Jul; 23(28):284117. PubMed ID: 21709336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lane formation in colloidal mixtures driven by an external field.
    Dzubiella J; Hoffmann GP; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021402. PubMed ID: 11863518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Long Ranged Correlations in Driven Binary Mixtures.
    Poncet A; Bénichou O; Démery V; Oshanin G
    Phys Rev Lett; 2017 Mar; 118(11):118002. PubMed ID: 28368633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lane formation in gravitationally driven colloid mixtures consisting of up to three different particle sizes.
    Hofmann K; Isele M; Erbe A; Leiderer P; Nielaba P
    Phys Rev E; 2024 Jun; 109(6-1):064601. PubMed ID: 39020999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory driven colloidal binary mixtures: axial segregation versus laning.
    Wysocki A; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041408. PubMed ID: 19518234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reentrance effect in the lane formation of driven colloids.
    Chakrabarti J; Dzubiella J; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):012401. PubMed ID: 15324099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lane formation in a driven attractive fluid.
    Wächtler CW; Kogler F; Klapp SH
    Phys Rev E; 2016 Nov; 94(5-1):052603. PubMed ID: 27967106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reentrant melting of lanes of rough circular disks.
    Samsuzzaman M; Sayeed A; Saha A
    Phys Rev E; 2022 Feb; 105(2-1):024608. PubMed ID: 35291112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lane and band formation of oppositely driven colloidal particles in two-dimensional ring geometries.
    Vater T; Isele M; Siems U; Nielaba P
    Phys Rev E; 2022 Aug; 106(2-1):024606. PubMed ID: 36109916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Transitions of Oppositely Charged Colloidal Particles Driven by Alternating Current Electric Field.
    Li B; Wang YL; Shi G; Gao Y; Shi X; Woodward CE; Forsman J
    ACS Nano; 2021 Feb; 15(2):2363-2373. PubMed ID: 33576616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Should "lane formation" occur systematically in driven liquids and colloids?
    Delhommelle J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016705. PubMed ID: 15697762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disordering, clustering, and laning transitions in particle systems with dispersion in the Magnus term.
    Reichhardt CJO; Reichhardt C
    Phys Rev E; 2019 Jan; 99(1-1):012606. PubMed ID: 30780381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension.
    Zangi R; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061508. PubMed ID: 14754213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity force curves, laning, and jamming for oppositely driven disk systems.
    Reichhardt C; Reichhardt CJO
    Soft Matter; 2018 Jan; 14(4):490-498. PubMed ID: 29214253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lane formation of colloidal particles driven in parallel by gravity.
    Isele M; Hofmann K; Erbe A; Leiderer P; Nielaba P
    Phys Rev E; 2023 Sep; 108(3-1):034607. PubMed ID: 37849083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional locking effects and dynamics for particles driven through a colloidal lattice.
    Reichhardt C; Olson Reichhardt CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041405. PubMed ID: 15169017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.