These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 27627375)
21. Dynamics of a vibration-driven single disk. Guan L; Tian L; Hou M; Han Y Sci Rep; 2021 Aug; 11(1):16561. PubMed ID: 34400671 [TBL] [Abstract][Full Text] [Related]
22. Dynamics of gas-fluidized granular rods. Daniels LJ; Park Y; Lubensky TC; Durian DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041301. PubMed ID: 19518218 [TBL] [Abstract][Full Text] [Related]
23. Ratchet due to broken friction symmetry. Nordén B; Zolotaryuk Y; Christiansen PL; Zolotaryuk AV Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011110. PubMed ID: 11800680 [TBL] [Abstract][Full Text] [Related]
24. Detection of diffusion anisotropy due to particle asymmetry from single-particle tracking of Brownian motion by the large-deviation principle. Hanasaki I; Isono Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051134. PubMed ID: 23004730 [TBL] [Abstract][Full Text] [Related]
25. Brownian molecular motors driven by rotation-translation coupling. Geislinger B; Kawai R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011912. PubMed ID: 16907132 [TBL] [Abstract][Full Text] [Related]
26. Ratchet effect in an asymmetric two-dimensional system of Janus particles. Kalinay P; Slanina F Phys Rev E; 2023 Jul; 108(1-1):014606. PubMed ID: 37583160 [TBL] [Abstract][Full Text] [Related]
27. Force generation by granular chains moving randomly on periodic ratchet plates. Chen K; Chou YC; To K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012711. PubMed ID: 23410363 [TBL] [Abstract][Full Text] [Related]
28. Active microrheology in corrugated channels. Puertas AM; Malgaretti P; Pagonabarraga I J Chem Phys; 2018 Nov; 149(17):174908. PubMed ID: 30408983 [TBL] [Abstract][Full Text] [Related]
29. Dispersion in two-dimensional periodic channels with discontinuous profiles. Mangeat M; Guérin T; Dean DS J Chem Phys; 2018 Sep; 149(12):124105. PubMed ID: 30278671 [TBL] [Abstract][Full Text] [Related]
30. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation. Ai BQ; Wu JC J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017 [TBL] [Abstract][Full Text] [Related]
32. Two-dimensional diffusion biased by a transverse gravitational force in an asymmetric channel: Reduction to an effective one-dimensional description. Pompa-García I; Dagdug L Phys Rev E; 2021 Oct; 104(4-1):044118. PubMed ID: 34781435 [TBL] [Abstract][Full Text] [Related]
33. Diffusion of colloidal rods in corrugated channels. Yang X; Zhu Q; Liu C; Wang W; Li Y; Marchesoni F; Hänggi P; Zhang HP Phys Rev E; 2019 Feb; 99(2-1):020601. PubMed ID: 30934353 [TBL] [Abstract][Full Text] [Related]
34. Effect of particle size oscillations on drift and diffusion along a periodically corrugated channel. Makhnovskii YA Phys Rev E; 2019 Mar; 99(3-1):032102. PubMed ID: 30999518 [TBL] [Abstract][Full Text] [Related]
35. From Brownian to Deterministic Motor Movement in a DNA-Based Molecular Rotor. Rothfischer F; Vogt M; Kopperger E; Gerland U; Simmel FC Nano Lett; 2024 May; 24(17):5224-5230. PubMed ID: 38640250 [TBL] [Abstract][Full Text] [Related]
36. Brownian motion of an asymmetrical particle in a potential field. Grima R; Yaliraki SN J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273 [TBL] [Abstract][Full Text] [Related]