These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27627398)

  • 21. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
    Zhang J; Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033016. PubMed ID: 25871211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow.
    Gupta R; Alam M
    Phys Rev E; 2017 Feb; 95(2-1):022903. PubMed ID: 28297874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of Newtonian fluid slip using a torsional ultrasonic oscillator.
    Willmott GR; Tallon JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066306. PubMed ID: 18233916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shear rate threshold for the boundary slip in dense polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031608. PubMed ID: 19905124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective slip boundary conditions for flows over nanoscale chemical heterogeneities.
    Hendy SC; Lund NJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066313. PubMed ID: 18233923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective boundary conditions for dense granular flows.
    Artoni R; Santomaso A; Canu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031304. PubMed ID: 19391932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature dependence of the velocity boundary condition for nanoscale fluid flows.
    Guo Z; Zhao TS; Shi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036301. PubMed ID: 16241565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.
    Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O
    J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall.
    Patlazhan S; Vagner S
    Phys Rev E; 2017 Jul; 96(1-1):013104. PubMed ID: 29347200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The sharkskin instability of polymer melt flows.
    Graham MD
    Chaos; 1999 Mar; 9(1):154-163. PubMed ID: 12779809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slip boundary conditions over curved surfaces.
    Guo L; Chen S; Robbins MO
    Phys Rev E; 2016 Jan; 93(1):013105. PubMed ID: 26871153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular scale contact line hydrodynamics of immiscible flows.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016306. PubMed ID: 12935245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microscopic determination of macroscopic boundary conditions in Newtonian liquids.
    Nakano H; Sasa SI
    Phys Rev E; 2019 Jan; 99(1-1):013106. PubMed ID: 30780218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
    Ferrás LL; Afonso AM; Alves MA; Nóbrega JM; Pinho FT
    J Colloid Interface Sci; 2014 Apr; 420():152-7. PubMed ID: 24559713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
    Priezjev NV; Darhuber AA; Troian SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of Knudsen Layer Effects in the Micro-Scale Backward-Facing Step in the Slip Flow Regime.
    Bhagat A; Gijare H; Dongari N
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30759853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.