BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27627572)

  • 1. The Thymus: A Forgotten, But Very Important Organ.
    Zdrojewicz Z; Pachura E; Pachura P
    Adv Clin Exp Med; 2016; 25(2):369-75. PubMed ID: 27627572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymocytes self-renewal: a major hope or a major threat?
    Peaudecerf L; Krenn G; Gonçalves P; Vasseur F; Rocha B
    Immunol Rev; 2016 May; 271(1):173-84. PubMed ID: 27088914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involution of the mammalian thymus, one of the leading regulators of aging.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1997; 11(5):421-40. PubMed ID: 9427047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Immunoendocrine Thymus as a Pacemaker of Lifespan.
    Csaba G
    Acta Microbiol Immunol Hung; 2016 Jun; 63(2):139-58. PubMed ID: 27352969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age- and disease-related decline in immune function: an opportunity for "thymus-boosting" therapies.
    Berthiaume F; Aparicio CL; Eungdamrong J; Yarmush ML
    Tissue Eng; 1999 Dec; 5(6):499-514. PubMed ID: 10611542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of zinc in pre- and postnatal mammalian thymic immunohistogenesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1998; 12(6):695-722. PubMed ID: 9891234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The role of the pineal-thymus system in the regulation of autoimmunity, aging and lifespan].
    Csaba G
    Orv Hetil; 2016 Jul; 157(27):1065-70. PubMed ID: 27346473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection.
    Haynes BF; Markert ML; Sempowski GD; Patel DD; Hale LP
    Annu Rev Immunol; 2000; 18():529-60. PubMed ID: 10837068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrathymic T cell differentiation in radiation bone marrow chimeras and its role in T cell emigration to the spleen. An immunohistochemical study.
    Hirokawa K; Sado T; Kubo S; Kamisaku H; Hitomi K; Utsuyama M
    J Immunol; 1985 Jun; 134(6):3615-24. PubMed ID: 2859334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clonal deletion of self-reactive T cells at the early stage of T cell development in thymus of radiation bone marrow chimeras.
    Matsuzaki G; Yoshikai Y; Ogimoto M; Kishihara K; Nomoto K
    J Immunol; 1990 Jul; 145(1):46-51. PubMed ID: 2141619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network.
    Bodey B; Bodey B; Kaiser HE
    In Vivo; 1997; 11(4):351-70. PubMed ID: 9292303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The atypical MAPK ERK3 controls positive selection of thymocytes.
    Sirois J; Daudelin JF; Boulet S; Marquis M; Meloche S; Labrecque N
    Immunology; 2015 May; 145(1):161-9. PubMed ID: 25521218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular events during radiation-induced thymic leukemogenesis in mice: abnormal T cell differentiation in the thymus and defect of thymocyte precursors in the bone marrow after split-dose irradiation.
    Muto M; Kubo E; Sado T
    J Immunol; 1985 Mar; 134(3):2026-31. PubMed ID: 3871460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory mechanisms of thymus and T cell development.
    Ma D; Wei Y; Liu F
    Dev Comp Immunol; 2013; 39(1-2):91-102. PubMed ID: 22227346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eosinophils interact with thymocytes and proliferate in the human thymus.
    Albinsson S; Lingblom C; Lundqvist C; Telemo E; Ekwall O; Wennerås C
    Eur J Immunol; 2021 Jun; 51(6):1539-1541. PubMed ID: 33686667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotype and localization of thymocytes expressing the homing receptor-associated antigen MEL-14: arguments for the view that most mature thymocytes are located in the medulla.
    Shortman K; Wilson A; Van Ewijk W; Scollay R
    J Immunol; 1987 Jan; 138(2):342-51. PubMed ID: 3491849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of human T lymphocytes. I. Acquisition of a novel human cell surface protein (p80) during normal intrathymic T cell maturation.
    Haynes BF; Harden EA; Telen MJ; Hemler ME; Strominger JL; Palker TJ; Scearce RM; Eisenbarth GS
    J Immunol; 1983 Sep; 131(3):1195-200. PubMed ID: 6224850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thymus cell migration: analysis of thymus emigrants with markers that distinguish medullary thymocytes from peripheral T cells.
    Scollay R; Wilson A; Shortman K
    J Immunol; 1984 Mar; 132(3):1089-94. PubMed ID: 6607278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic human T cell developmental processes in humanized mice cotransplanted with human fetal thymus/liver tissue and hematopoietic stem cells.
    Joo SY; Chung YS; Choi B; Kim M; Kim JH; Jun TG; Chang J; Sprent J; Surh CD; Joh JW; Kim SJ
    Transplantation; 2012 Dec; 94(11):1095-102. PubMed ID: 23222735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thymic T-cell tolerance of neuroendocrine functions: physiology and pathophysiology.
    Geenen V; Kecha O; Brilot F; Hansenne I; Renard C; Martens H
    Cell Mol Biol (Noisy-le-grand); 2001 Feb; 47(1):179-88. PubMed ID: 11292253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.