BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27627884)

  • 1. Computational analyses of the effect of novel amino acid clusters of human transglutaminase 2 on its structure and function.
    Thangaraju K; Király R; Mótyán JA; Ambrus VA; Fuxreiter M; Fésüs L
    Amino Acids; 2017 Mar; 49(3):605-614. PubMed ID: 27627884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes.
    Du Z; Uversky VN
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28934129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the interaction between transglutaminase 2 and fibronectin.
    Cardoso I; Østerlund EC; Stamnaes J; Iversen R; Andersen JT; Jørgensen TJ; Sollid LM
    Amino Acids; 2017 Mar; 49(3):489-500. PubMed ID: 27394141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2.
    Thangaraju K; Király R; Demény MA; András Mótyán J; Fuxreiter M; Fésüs L
    PLoS One; 2017; 12(3):e0172189. PubMed ID: 28248968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of transglutaminase 2 with GTP complex and amino acid sequence evidence of evolution of GTP binding site.
    Jang TH; Lee DS; Choi K; Jeong EM; Kim IG; Kim YW; Chun JN; Jeon JH; Park HH
    PLoS One; 2014; 9(9):e107005. PubMed ID: 25192068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications.
    Bah A; Forman-Kay JD
    J Biol Chem; 2016 Mar; 291(13):6696-705. PubMed ID: 26851279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transglutaminase 2: an enigmatic enzyme with diverse functions.
    Fesus L; Piacentini M
    Trends Biochem Sci; 2002 Oct; 27(10):534-9. PubMed ID: 12368090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Characterization of CTX-M-64 and CTX-M-14 Provides Insights into the Structure and Catalytic Activity of the CTX-M Class of Enzymes.
    He D; Chiou J; Zeng Z; Chan EW; Liu JH; Chen S
    Antimicrob Agents Chemother; 2016 Oct; 60(10):6084-90. PubMed ID: 27480856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-molecular crosslinking activity is engendered by the dimeric form of transglutaminase 2.
    Kim N; Lee WK; Lee SH; Jin KS; Kim KH; Lee Y; Song M; Kim SY
    Amino Acids; 2017 Mar; 49(3):461-471. PubMed ID: 27394142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator.
    Sluchanko NN; Beelen S; Kulikova AA; Weeks SD; Antson AA; Gusev NB; Strelkov SV
    Structure; 2017 Feb; 25(2):305-316. PubMed ID: 28089448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of human transglutaminase 2 in complex with adenosine triphosphate.
    Han BG; Cho JW; Cho YD; Jeong KC; Kim SY; Lee BI
    Int J Biol Macromol; 2010 Aug; 47(2):190-5. PubMed ID: 20450932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome.
    Davey NE; Seo MH; Yadav VK; Jeon J; Nim S; Krystkowiak I; Blikstad C; Dong D; Markova N; Kim PM; Ivarsson Y
    FEBS J; 2017 Feb; 284(3):485-498. PubMed ID: 28002650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate preference of transglutaminase 2 revealed by logistic regression analysis and intrinsic disorder examination.
    Csosz E; Bagossi P; Nagy Z; Dosztanyi Z; Simon I; Fesus L
    J Mol Biol; 2008 Nov; 383(2):390-402. PubMed ID: 18761350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins.
    Uversky VN
    J Biol Chem; 2016 Mar; 291(13):6681-8. PubMed ID: 26851286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a novel prolidase from Deinococcus radiodurans identifies new subfamily of bacterial prolidases.
    Are VN; Jamdar SN; Ghosh B; Goyal VD; Kumar A; Neema S; Gadre R; Makde RD
    Proteins; 2017 Dec; 85(12):2239-2251. PubMed ID: 28929533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein.
    Laptenko O; Tong DR; Manfredi J; Prives C
    Trends Biochem Sci; 2016 Dec; 41(12):1022-1034. PubMed ID: 27669647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten.
    Feriotto G; Calza R; Bergamini CM; Griffin M; Wang Z; Beninati S; Ferretti V; Marzola E; Guerrini R; Pagnoni A; Cavazzini A; Casciano F; Mischiati C
    Amino Acids; 2017 Mar; 49(3):551-565. PubMed ID: 27699491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions.
    Krystkowiak I; Davey NE
    Nucleic Acids Res; 2017 Jul; 45(W1):W464-W469. PubMed ID: 28387819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins.
    Jemth P; Karlsson E; Vögeli B; Guzovsky B; Andersson E; Hultqvist G; Dogan J; Güntert P; Riek R; Chi CN
    Sci Adv; 2018 Oct; 4(10):eaau4130. PubMed ID: 30397651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the cause of evolutionary variance within intrinsically disordered regions in human proteins.
    Banerjee S; Chakraborty S; De RK
    J Biomol Struct Dyn; 2017 Feb; 35(2):233-249. PubMed ID: 26790343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.