BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 27627902)

  • 1. DNA and RNA profiling of excavated human remains with varying postmortem intervals.
    van den Berge M; Wiskerke D; Gerretsen RR; Tabak J; Sijen T
    Int J Legal Med; 2016 Nov; 130(6):1471-1480. PubMed ID: 27627902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a mRNA profiling multiplex for the inference of organ tissues.
    Lindenbergh A; van den Berge M; Oostra RJ; Cleypool C; Bruggink A; Kloosterman A; Sijen T
    Int J Legal Med; 2013 Sep; 127(5):891-900. PubMed ID: 23839651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of STR Typing Success Rate in Soft Tissues from Putrefied Bodies Based on a Quantitative Grading System for Putrefaction.
    Courts C; Sauer E; Hofmann Y; Madea B; Schyma C
    J Forensic Sci; 2015 Jul; 60(4):1016-21. PubMed ID: 25808732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of different classes of RNA molecules from formalin-fixed paraffin-embedded autoptic tissues: a pilot study.
    Muciaccia B; Vico C; Aromatario M; Fazi F; Cecchi R
    Int J Legal Med; 2015 Jan; 129(1):11-21. PubMed ID: 25135750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of organ tissue types and skin from forensic samples by microRNA expression analysis.
    Sauer E; Extra A; Cachée P; Courts C
    Forensic Sci Int Genet; 2017 May; 28():99-110. PubMed ID: 28193507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of mRNA from human heart tissue and putative applications in forensic molecular pathology.
    Partemi S; Berne PM; Batlle M; Berruezo A; Mont L; Riuró H; Ortiz JT; Roig E; Pascali VL; Brugada R; Brugada J; Oliva A
    Forensic Sci Int; 2010 Dec; 203(1-3):99-105. PubMed ID: 20705404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preservation and rapid purification of DNA from decomposing human tissue samples.
    Sorensen A; Rahman E; Canela C; Gangitano D; Hughes-Stamm S
    Forensic Sci Int Genet; 2016 Nov; 25():182-190. PubMed ID: 27631894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of specific soft tissue swabs for the forensic identification of highly decomposed bodies.
    Helm K; Matzenauer C; Neuhuber F; Monticelli F; Meyer H; Pittner S; Gotsmy W
    Int J Legal Med; 2021 Jul; 135(4):1319-1327. PubMed ID: 33880634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An economical and efficient method for postmortem DNA sampling in mass fatalities.
    Mundorff AZ; Amory S; Huel R; Bilić A; Scott AL; Parsons TJ
    Forensic Sci Int Genet; 2018 Sep; 36():167-175. PubMed ID: 30032092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing forensic RNA typing: On non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling.
    van den Berge M; Bhoelai B; Harteveld J; Matai A; Sijen T
    Forensic Sci Int Genet; 2016 Jan; 20():119-129. PubMed ID: 26590860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of pesticides in postmortem blood and bone marrow of pesticide treated rabbits.
    Akcan R; Hilal A; Daglioglu N; Cekin N; Gulmen MK
    Forensic Sci Int; 2009 Aug; 189(1-3):82-7. PubMed ID: 19446970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-field collection and preservation of decomposing human tissues to facilitate rapid purification and STR typing.
    Holmes AS; Roman MG; Hughes-Stamm S
    Forensic Sci Int Genet; 2018 Sep; 36():124-129. PubMed ID: 29990824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time PCR detection of five different "endogenous control gene" transcripts in forensic autopsy material.
    Heinrich M; Lutz-Bonengel S; Matt K; Schmidt U
    Forensic Sci Int Genet; 2007 Jun; 1(2):163-9. PubMed ID: 19083749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of DNA yield and STR success rates from different tissues in embalmed bodies.
    Wheeler A; Czado N; Gangitano D; Turnbough M; Hughes-Stamm S
    Int J Legal Med; 2017 Jan; 131(1):61-66. PubMed ID: 27338932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Successful RNA extraction from various human postmortem tissues.
    Heinrich M; Matt K; Lutz-Bonengel S; Schmidt U
    Int J Legal Med; 2007 Mar; 121(2):136-42. PubMed ID: 17115174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.
    Johnston E; Stephenson M
    J Forensic Sci; 2016 Jul; 61(4):898-902. PubMed ID: 27364268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorprothixene in bodies after exhumation.
    Käferstein H; Sticht G; Madea B
    Forensic Sci Int; 2013 Jun; 229(1-3):e30-4. PubMed ID: 23821789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios.
    van den Berge M; Ozcanhan G; Zijlstra S; Lindenbergh A; Sijen T
    Forensic Sci Int Genet; 2016 Mar; 21():81-9. PubMed ID: 26736139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of FTA cards to acquire DNA profiles from postmortem cases.
    Green H; Tillmar A; Pettersson G; Montelius K
    Int J Legal Med; 2019 Nov; 133(6):1651-1657. PubMed ID: 30747256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition chemistry of human remains: a new methodology for determining the postmortem interval.
    Vass AA; Barshick SA; Sega G; Caton J; Skeen JT; Love JC; Synstelien JA
    J Forensic Sci; 2002 May; 47(3):542-53. PubMed ID: 12051334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.