These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27628371)

  • 1. Time multiplexing based geometrical aberrations correction.
    Ilovitsh A; Rand G; Levavi S; Zalevsky Z
    Opt Lett; 2016 Sep; 41(18):4257-60. PubMed ID: 27628371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time multiplexing based extended depth of focus imaging.
    Ilovitsh A; Zalevsky Z
    Opt Lett; 2016 Jan; 41(1):183-6. PubMed ID: 26696189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution using Barker-based array projected via spatial light modulator.
    Ilovitsh A; Ilovitsh T; Preter E; Levanon N; Zalevsky Z
    Opt Lett; 2015 Apr; 40(8):1802-5. PubMed ID: 25872078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.
    Linck M; Hartel P; Uhlemann S; Kahl F; Müller H; Zach J; Haider M; Niestadt M; Bischoff M; Biskupek J; Lee Z; Lehnert T; Börrnert F; Rose H; Kaiser U
    Phys Rev Lett; 2016 Aug; 117(7):076101. PubMed ID: 27563976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration.
    Weeber HA; Piers PA
    J Refract Surg; 2012 Jan; 28(1):48-52. PubMed ID: 22074466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preliminary in vivo assessment of higher-order aberrations induced by a silicone hydrogel monofocal contact lens.
    Awwad ST; Sanchez P; Sanchez A; McCulley JP; Cavanagh HD
    Eye Contact Lens; 2008 Jan; 34(1):2-5. PubMed ID: 18180674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the range of vision using diffractive intraocular lens technology.
    Weeber HA; Meijer ST; Piers PA
    J Cataract Refract Surg; 2015 Dec; 41(12):2746-54. PubMed ID: 26796456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses.
    Franchini A
    J Cataract Refract Surg; 2007 Mar; 33(3):497-509. PubMed ID: 17321402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial geometrical aberration correction up to 5th order with N-SYLC.
    Hoque S; Ito H; Takaoka A; Nishi R
    Ultramicroscopy; 2017 Nov; 182():68-80. PubMed ID: 28666137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring and correcting aberrations of a cathode objective lens.
    Tromp RM
    Ultramicroscopy; 2011 Mar; 111(4):273-81. PubMed ID: 21353153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the see-saw method to all refracting optical systems.
    Rosete-Aguilar M
    Appl Opt; 1996 Apr; 35(10):1659-68. PubMed ID: 21085287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of macro-filter-lens with simultaneous chromatic and geometric aberration correction.
    Prasad DK; Brown MS
    Appl Opt; 2014 Jan; 53(1):32-7. PubMed ID: 24513986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system.
    Zheleznyak L; Kim MJ; MacRae S; Yoon G
    J Cataract Refract Surg; 2012 Oct; 38(10):1724-33. PubMed ID: 22902188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spherical aberration in contact lens wear.
    Lindskoog Pettersson A; Jarkö C; Alvin A; Unsbo P; Brautaset R
    Cont Lens Anterior Eye; 2008 Aug; 31(4):189-93. PubMed ID: 18602857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super resolved optical system for objects with finite sizes using circular gratings.
    Ilovitsh A; Mico V; Zalevsky Z
    Opt Express; 2015 Sep; 23(18):23667-79. PubMed ID: 26368464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double aberration correction in a low-energy electron microscope.
    Schmidt T; Marchetto H; Lévesque PL; Groh U; Maier F; Preikszas D; Hartel P; Spehr R; Lilienkamp G; Engel W; Fink R; Bauer E; Rose H; Umbach E; Freund HJ
    Ultramicroscopy; 2010 Oct; 110(11):1358-61. PubMed ID: 20692099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatic aberration correction employing reinforcement learning.
    Schmidt K; Guo N; Wang W; Czarske J; Koukourakis N
    Opt Express; 2023 May; 31(10):16133-16147. PubMed ID: 37157699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the spherical and chromatic aberration barrier in transmission electron microscopy.
    Freitag B; Kujawa S; Mul PM; Ringnalda J; Tiemeijer PC
    Ultramicroscopy; 2005 Feb; 102(3):209-14. PubMed ID: 15639351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and future aberration correctors for the improvement of resolution in electron microscopy.
    Haider M; Hartel P; Müller H; Uhlemann S; Zach J
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3665-82. PubMed ID: 19687059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.