BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27629031)

  • 1. Muscle-spring dynamics in time-limited, elastic movements.
    Rosario MV; Sutton GP; Patek SN; Sawicki GS
    Proc Biol Sci; 2016 Sep; 283(1838):. PubMed ID: 27629031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuned muscle and spring properties increase elastic energy storage.
    Mendoza E; Azizi E
    J Exp Biol; 2021 Dec; 224(24):. PubMed ID: 34821932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement.
    Roberts TJ
    J Exp Biol; 2016 Jan; 219(Pt 2):266-75. PubMed ID: 26792339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study.
    Mörl F; Siebert T; Häufle D
    Biomech Model Mechanobiol; 2016 Feb; 15(1):245-58. PubMed ID: 26038176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hurry Up and Get Out of the Way! Exploring the Limits of Muscle-Based Latch Systems for Power Amplification.
    Abbott EM; Nezwek T; Schmitt D; Sawicki GS
    Integr Comp Biol; 2019 Dec; 59(6):1546-1558. PubMed ID: 31418784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energetic benefits of tendon springs in running: is the reduction of muscle work important?
    Holt NC; Roberts TJ; Askew GN
    J Exp Biol; 2014 Dec; 217(Pt 24):4365-71. PubMed ID: 25394624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of a tunable biological spring: elastic energy storage in aponeuroses varies with transverse strain in vivo.
    Arellano CJ; Konow N; Gidmark NJ; Roberts TJ
    Proc Biol Sci; 2019 Apr; 286(1900):20182764. PubMed ID: 30966986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems.
    Longo SJ; Cox SM; Azizi E; Ilton M; Olberding JP; St Pierre R; Patek SN
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31399509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight?
    Konow N; Cheney JA; Roberts TJ; Waldman JR; Swartz SM
    Proc Biol Sci; 2015 Oct; 282(1816):20151832. PubMed ID: 26423848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power amplification in an isolated muscle-tendon unit is load dependent.
    Sawicki GS; Sheppard P; Roberts TJ
    J Exp Biol; 2015 Nov; 218(Pt 22):3700-9. PubMed ID: 26449973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling age-related changes in muscle-tendon dynamics during cyclical contractions in the rat gastrocnemius.
    Danos N; Holt NC; Sawicki GS; Azizi E
    J Appl Physiol (1985); 2016 Oct; 121(4):1004-1012. PubMed ID: 27493196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures.
    Bojsen-Møller J; Magnusson SP; Rasmussen LR; Kjaer M; Aagaard P
    J Appl Physiol (1985); 2005 Sep; 99(3):986-94. PubMed ID: 15860680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of hind limb tendons in gibbon locomotion: springs or strings?
    Vereecke EE; Channon AJ
    J Exp Biol; 2013 Nov; 216(Pt 21):3971-80. PubMed ID: 23868842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions.
    Sawicki GS; Robertson BD; Azizi E; Roberts TJ
    J Exp Biol; 2015 Oct; 218(Pt 19):3150-9. PubMed ID: 26232413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs.
    Roberts TJ; Marsh RL
    J Exp Biol; 2003 Aug; 206(Pt 15):2567-80. PubMed ID: 12819264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental differences in dynamic muscle-tendon behaviour: implications for movement efficiency.
    Waugh CM; Korff T; Blazevich AJ
    J Exp Biol; 2017 Apr; 220(Pt 7):1287-1294. PubMed ID: 28108669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement.
    Olberding JP; Deban SM; Rosario MV; Azizi E
    Integr Comp Biol; 2019 Dec; 59(6):1515-1524. PubMed ID: 31397849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of temperature on elastic energy storage and release in a system with a dynamic mechanical advantage latch.
    Mendoza E; Martinez M; Olberding JP; Azizi E
    J Exp Biol; 2023 Oct; 226(19):. PubMed ID: 37727106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additional in-series compliance reduces muscle force summation and alters the time course of force relaxation during fixed-end contractions.
    Mayfield DL; Launikonis BS; Cresswell AG; Lichtwark GA
    J Exp Biol; 2016 Nov; 219(Pt 22):3587-3596. PubMed ID: 27609762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.
    Roberts TJ; Azizi E
    J Appl Physiol (1985); 2010 Aug; 109(2):396-404. PubMed ID: 20507964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.