BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27629409)

  • 21. [Analysis of pollution characteristics of solid waste incinerator fly ash in Zhejiang province].
    Shen DS; Zheng YG; Yao J; Wang MZ; Zhang Y; Wang FT; Fan XG
    Huan Jing Ke Xue; 2011 Sep; 32(9):2610-6. PubMed ID: 22165229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposure to toxicants in soil and bottom ash deposits in Agbogbloshie, Ghana: human health risk assessment.
    Obiri S; Ansa-Asare OD; Mohammed S; Darko HF; Dartey AG
    Environ Monit Assess; 2016 Oct; 188(10):583. PubMed ID: 27663875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal mobility and toxicity of reclaimed copper smelting fly ash and smelting slag.
    Shu J; Lei T; Deng Y; Chen M; Zeng X; Liu R
    RSC Adv; 2021 Feb; 11(12):6877-6884. PubMed ID: 35423186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the removal of hexavalent chromium from a Class F fly ash.
    Huggins FE; Rezaee M; Honaker RQ; Hower JC
    Waste Manag; 2016 May; 51():105-110. PubMed ID: 26951722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigations of chemical fraction of Co and Ni in industrial fly ash and mobility of metals in environmental conditions.
    Soco E; Kalembkiewicz J
    Chemosphere; 2007 Feb; 67(2):359-64. PubMed ID: 17150241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil.
    Liu T; Li F; Jin Z; Yang Y
    Environ Pollut; 2018 Jul; 238():359-368. PubMed ID: 29574360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of pH, curing time and environmental stress on the immobilization of hazardous waste using activated fly ash.
    Srivastava S; Chaudhary R; Khale D
    J Hazard Mater; 2008 May; 153(3):1103-9. PubMed ID: 17988796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical study on distribution of multiple dissolved elements and a water quality assessment around a simulated stackable fly ash.
    Wang J
    Ecotoxicol Environ Saf; 2018 Sep; 159():46-55. PubMed ID: 29730408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing.
    Okorie A; Entwistle J; Dean JR
    Chemosphere; 2012 Feb; 86(5):460-7. PubMed ID: 22024094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term environmental impacts of building composites containing waste materials: Evaluation of the leaching protocols.
    Drinčić A; Nikolić I; Zuliani T; Milačič R; Ščančar J
    Waste Manag; 2017 Jan; 59():340-349. PubMed ID: 27838160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.
    Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T
    Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing human exposure to aluminium, chromium and vanadium through outdoor dust ingestion in the Bassin Minier de Provence, France.
    Reis AP; Patinha C; Noack Y; Robert S; Dias AC
    Environ Geochem Health; 2014 Apr; 36(2):303-17. PubMed ID: 23990126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization.
    Deka B; Bhattacharyya KG
    J Environ Manage; 2015 Mar; 150():479-488. PubMed ID: 25560663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant.
    Zhou Y; Ning XA; Liao X; Lin M; Liu J; Wang J
    Ecotoxicol Environ Saf; 2013 Sep; 95():130-6. PubMed ID: 23778058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter.
    Sedumedi HN; Mandiwana KL; Ngobeni P; Panichev N
    J Hazard Mater; 2009 Dec; 172(2-3):1686-9. PubMed ID: 19716233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].
    Wang L; Jin J; Li XD; Chi Y; Yan JH
    Huan Jing Ke Xue; 2010 Aug; 31(8):1973-80. PubMed ID: 21090322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.
    Wang KS; Lin KL; Lee CH
    J Hazard Mater; 2009 Feb; 162(1):338-43. PubMed ID: 18573610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromium, nickel, and cobalt in cosmetic matrices: an integrated bioanalytical characterization through total content, bioaccessibility, and Cr(III)/Cr(VI) speciation.
    Bruzzoniti MC; Abollino O; Pazzi M; Rivoira L; Giacomino A; Vincenti M
    Anal Bioanal Chem; 2017 Nov; 409(29):6831-6841. PubMed ID: 28948317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solidification and Biotoxicity Assessment of Thermally Treated Municipal Solid Waste Incineration (MSWI) Fly Ash.
    Gong B; Deng Y; Yang Y; Tan SN; Liu Q; Yang W
    Int J Environ Res Public Health; 2017 Jun; 14(6):. PubMed ID: 28604580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring the species of arsenic, chromium and nickel in milled coal, bottom ash and fly ash from a pulverized coal-fired power plant in western Canada.
    Goodarzi F; Huggins FE
    J Environ Monit; 2001 Feb; 3(1):1-6. PubMed ID: 11253001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.