These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

777 related articles for article (PubMed ID: 27629638)

  • 21. Folding kinetics of designer proteins. Application of the diffusion-collision model to a de novo designed four-helix bundle.
    Yapa KK; Weaver DL
    Biophys J; 1992 Jul; 63(1):296-9. PubMed ID: 1420873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability.
    Xiong P; Wang M; Zhou X; Zhang T; Zhang J; Chen Q; Liu H
    Nat Commun; 2014 Oct; 5():5330. PubMed ID: 25345468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mega-scale experimental analysis of protein folding stability in biology and design.
    Tsuboyama K; Dauparas J; Chen J; Laine E; Mohseni Behbahani Y; Weinstein JJ; Mangan NM; Ovchinnikov S; Rocklin GJ
    Nature; 2023 Aug; 620(7973):434-444. PubMed ID: 37468638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of de novo totally random biosequences, Part II: On the folding frequency in a totally random library of de novo proteins obtained by phage display.
    Chiarabelli C; Vrijbloed JW; De Lucrezia D; Thomas RM; Stano P; Polticelli F; Ottone T; Papa E; Luisi PL
    Chem Biodivers; 2006 Aug; 3(8):840-59. PubMed ID: 17193317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of foldability and stability in designing real protein sequences.
    Biswas P; Bhattacherjee A
    Phys Chem Chem Phys; 2011 May; 13(20):9223-31. PubMed ID: 21468433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Folding free energy function selects native-like protein sequences in the core but not on the surface.
    Jaramillo A; Wernisch L; Héry S; Wodak SJ
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13554-9. PubMed ID: 12368470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo protein design by inversion of the AlphaFold structure prediction network.
    Goverde CA; Wolf B; Khakzad H; Rosset S; Correia BE
    Protein Sci; 2023 Jun; 32(6):e4653. PubMed ID: 37165539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective scoring function for protein sequence design.
    Liang S; Grishin NV
    Proteins; 2004 Feb; 54(2):271-81. PubMed ID: 14696189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomolecular templating of functional hybrid nanostructures using repeat protein scaffolds.
    Romera D; Couleaud P; Mejias SH; Aires A; Cortajarena AL
    Biochem Soc Trans; 2015 Oct; 43(5):825-31. PubMed ID: 26517889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection.
    Scalley-Kim M; Baker D
    J Mol Biol; 2004 Apr; 338(3):573-83. PubMed ID: 15081814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Principles of nanostructure design with protein building blocks.
    Tsai CJ; Zheng J; Zanuy D; Haspel N; Wolfson H; Alemán C; Nussinov R
    Proteins; 2007 Jul; 68(1):1-12. PubMed ID: 17407160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unstructural biology coming of age.
    Tompa P
    Curr Opin Struct Biol; 2011 Jun; 21(3):419-25. PubMed ID: 21514142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistical theory of protein sequence design by random mutation.
    Bhattacherjee A; Biswas P
    J Phys Chem B; 2009 Apr; 113(16):5520-7. PubMed ID: 19323540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programming supramolecular biohybrids as precision therapeutics.
    Ng DY; Wu Y; Kuan SL; Weil T
    Acc Chem Res; 2014 Dec; 47(12):3471-80. PubMed ID: 25357135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in computational protein design.
    Pantazes RJ; Grisewood MJ; Maranas CD
    Curr Opin Struct Biol; 2011 Aug; 21(4):467-72. PubMed ID: 21600758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo protein design. II. Plasticity in sequence space.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1183-93. PubMed ID: 10547294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What is the protein design alphabet?
    Dokholyan NV
    Proteins; 2004 Mar; 54(4):622-8. PubMed ID: 14997558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.