These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
805 related articles for article (PubMed ID: 27629769)
1. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions. Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769 [TBL] [Abstract][Full Text] [Related]
2. Pectin and Xyloglucan Influence the Attachment of Salmonella enterica and Listeria monocytogenes to Bacterial Cellulose-Derived Plant Cell Wall Models. Tan MS; Rahman S; Dykes GA Appl Environ Microbiol; 2016 Jan; 82(2):680-8. PubMed ID: 26567310 [TBL] [Abstract][Full Text] [Related]
3. Attachment of bacterial pathogens to a bacterial cellulose-derived plant cell wall model: a proof of concept. Tan MS; Wang Y; Dykes GA Foodborne Pathog Dis; 2013 Nov; 10(11):992-4. PubMed ID: 23941519 [TBL] [Abstract][Full Text] [Related]
4. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material. Tan MSF; Rahman S; Dykes GA Food Microbiol; 2017 Apr; 62():62-67. PubMed ID: 27889167 [TBL] [Abstract][Full Text] [Related]
5. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models. Tan MS; White AP; Rahman S; Dykes GA PLoS One; 2016; 11(6):e0158311. PubMed ID: 27355584 [TBL] [Abstract][Full Text] [Related]
7. Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Park YB; Lee CM; Kafle K; Park S; Cosgrove DJ; Kim SH Biomacromolecules; 2014 Jul; 15(7):2718-24. PubMed ID: 24846814 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired capsules based on nanocellulose, xyloglucan and pectin - The influence of capsule wall composition on permeability properties. Paulraj T; Riazanova AV; Svagan AJ Acta Biomater; 2018 Mar; 69():196-205. PubMed ID: 29341931 [TBL] [Abstract][Full Text] [Related]
9. Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods. Moore JP; Nguema-Ona E; Fangel JU; Willats WG; Hugo A; Vivier MA Carbohydr Polym; 2014 Jan; 99():190-8. PubMed ID: 24274496 [TBL] [Abstract][Full Text] [Related]
10. Probing adhesion between nanoscale cellulose fibres using AFM lateral force spectroscopy: The effect of hemicelluloses on hydrogen bonding. Dolan GK; Cartwright B; Bonilla MR; Gidley MJ; Stokes JR; Yakubov GE Carbohydr Polym; 2019 Mar; 208():97-107. PubMed ID: 30658836 [TBL] [Abstract][Full Text] [Related]
11. Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation. Mikkelsen D; Lopez-Sanchez P; Wang D; Gidley MJ Methods Mol Biol; 2020; 2149():73-87. PubMed ID: 32617930 [TBL] [Abstract][Full Text] [Related]
12. Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks. Mikkelsen D; Flanagan BM; Wilson SM; Bacic A; Gidley MJ Biomacromolecules; 2015 Apr; 16(4):1232-9. PubMed ID: 25756836 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical architecture of bacterial cellulose and composite plant cell wall polysaccharide hydrogels using small angle neutron scattering. Martínez-Sanz M; Gidley MJ; Gilbert EP Soft Matter; 2016 Feb; 12(5):1534-49. PubMed ID: 26658920 [TBL] [Abstract][Full Text] [Related]
14. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides. Bootten TJ; Harris PJ; Melton LD; Newman RH Biomacromolecules; 2009 Nov; 10(11):2961-7. PubMed ID: 19817435 [TBL] [Abstract][Full Text] [Related]
15. Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation. Mikkelsen D; Gidley MJ Methods Mol Biol; 2011; 715():197-208. PubMed ID: 21222086 [TBL] [Abstract][Full Text] [Related]
16. Cell wall carbohydrates from fruit pulp of Argania spinosa: structural analysis of pectin and xyloglucan polysaccharides. Aboughe-Angone S; Nguema-Ona E; Ghosh P; Lerouge P; Ishii T; Ray B; Driouich A Carbohydr Res; 2008 Jan; 343(1):67-72. PubMed ID: 18005949 [TBL] [Abstract][Full Text] [Related]
17. Transgenic modification of potato pectic polysaccharides also affects type and level of cell wall xyloglucan. Huang JH; Jiang R; Kortstee A; Dees DC; Trindade LM; Gruppen H; Schols HA J Sci Food Agric; 2017 Aug; 97(10):3240-3248. PubMed ID: 27976364 [TBL] [Abstract][Full Text] [Related]
18. Structural properties and foaming of plant cell wall polysaccharide dispersions. Beatrice CAG; Rosa-Sibakov N; Lille M; Sözer N; Poutanen K; Ketoja JA Carbohydr Polym; 2017 Oct; 173():508-518. PubMed ID: 28732894 [TBL] [Abstract][Full Text] [Related]
19. Metal ion effects on hydraulic conductivity of bacterial cellulose-pectin composites used as plant cell wall analogs. McKenna BA; Kopittke PM; Wehr JB; Blamey FP; Menzies NW Physiol Plant; 2010 Feb; 138(2):205-14. PubMed ID: 20053181 [TBL] [Abstract][Full Text] [Related]
20. Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides. Le Bourvellec C; Bouchet B; Renard CM Biochim Biophys Acta; 2005 Aug; 1725(1):10-8. PubMed ID: 16023787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]