BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27630022)

  • 1. NAD-preferring malic enzyme: localization, regulation and its potential role in herring (Clupea harengus) sperm cells.
    Niedźwiecka N; Gronczewska J; Skorkowski EF
    Fish Physiol Biochem; 2017 Apr; 43(2):351-360. PubMed ID: 27630022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and properties of malic enzyme from herring Clupea harengus spermatozoa.
    Niedźwiecka N; Skorkowski EF
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Mar; 164(3):216-20. PubMed ID: 23313742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme activities in fish spermatozoa with focus on lactate dehydrogenase isoenzymes from herring Clupea harengus.
    Gronczewska J; Zietara MS; Biegniewska A; Skorkowski EF
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Mar; 134(3):399-406. PubMed ID: 12628371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergetics of fish spermatozoa with focus on some herring (Clupea harengus) enzymes.
    Gronczewska J; Niedźwiecka N; Grzyb K; Skorkowski EF
    Fish Physiol Biochem; 2019 Oct; 45(5):1615-1625. PubMed ID: 31111318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of coenzyme utilization by mitochondrial NAD(P)-dependent malic enzyme.
    Skorkowski EF; Storey KB
    Int J Biochem; 1990; 22(5):471-5. PubMed ID: 2347425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of the nucleotide binding site Lys346.
    Hsieh JY; Liu GY; Hung HC
    FEBS J; 2008 Nov; 275(21):5383-92. PubMed ID: 18959763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control.
    Pon J; Napoli E; Luckhart S; Giulivi C
    Malar J; 2011 Oct; 10():318. PubMed ID: 22029897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hung HC; Chien YC; Hsieh JY; Chang GG; Liu GY
    Biochemistry; 2005 Sep; 44(38):12737-45. PubMed ID: 16171388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial NAD(P)-dependent malic enzyme from herring testicular tissue: Purification, kinetic behaviour and regulatory properties.
    Skorkowski EF; Storey KB
    Fish Physiol Biochem; 1990 Nov; 8(6):475-84. PubMed ID: 24221034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADP-malic enzyme from the C4 plant Flaveria bidentis: nucleotide substrate specificity.
    Ashton AR
    Arch Biochem Biophys; 1997 Sep; 345(2):251-8. PubMed ID: 9308897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration and possible function of NADH:NAD+ transhydrogenase from ascaris muscle mitochondria.
    Köhler P; Saz HJ
    J Biol Chem; 1976 Apr; 251(8):2217-25. PubMed ID: 1262321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the role of malic enzyme in the rapid oxidation of malate by cod heart mitochondria.
    Skorkowski EF; Aleksandrowicz Z; Scisłowski PW; Swierczyński J
    Comp Biochem Physiol B; 1984; 77(2):379-84. PubMed ID: 6697695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and regulatory properties of mitochondrial malic enzyme from rat skeletal muscle.
    Swierczyński J; Stankiewicz A; Scislowski P; Aleksandrowicz Z
    Biochim Biophys Acta; 1980 Mar; 612(1):1-10. PubMed ID: 7362827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial NAD(P)-malic enzyme from herring skeletal muscle : Purification and some kinetic and regulatory properties.
    Skorkowski EF; Storey KB
    Fish Physiol Biochem; 1988 Oct; 5(4):241-8. PubMed ID: 24226785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites.
    Karsten WE; Pais JE; Rao GS; Harris BG; Cook PF
    Biochemistry; 2003 Aug; 42(32):9712-21. PubMed ID: 12911313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate.
    Yang Z; Lanks CW; Tong L
    Structure; 2002 Jul; 10(7):951-60. PubMed ID: 12121650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of the dual cofactor specificity and substrate cooperativity of the human mitochondrial NAD(P)+-dependent malic enzyme: functional roles of glutamine 362.
    Hsieh JY; Liu GY; Chang GG; Hung HC
    J Biol Chem; 2006 Aug; 281(32):23237-45. PubMed ID: 16757477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of C4 photosynthesis: modulation of mitochondrial NAD-malic enzyme by adenylates.
    Furbank RT; Agostino A; Hatch MD
    Arch Biochem Biophys; 1991 Sep; 289(2):376-81. PubMed ID: 1898077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Liu JH; Fang YW; Hung HC
    Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.