These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 27630185)
1. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Higginson EE; Galen JE; Levine MM; Tennant SM Pathog Dis; 2016 Nov; 74(8):. PubMed ID: 27630185 [TBL] [Abstract][Full Text] [Related]
2. Influence of Low-Shear Modeled Microgravity on Heat Resistance, Membrane Fatty Acid Composition, and Heat Stress-Related Gene Expression in Escherichia coli O157:H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895. Kim HW; Rhee MS Appl Environ Microbiol; 2016 May; 82(10):2893-2901. PubMed ID: 26944847 [TBL] [Abstract][Full Text] [Related]
3. Impact of Microgravity on Virulence, Antibiotic Resistance and Gene Expression in Beneficial and Pathogenic Microorganisms. Salavatifar M; Ahmadi SM; Todorov SD; Khosravi-Darani K; Tripathy A Mini Rev Med Chem; 2023; 23(16):1608-1622. PubMed ID: 36624640 [TBL] [Abstract][Full Text] [Related]
4. Effect of microgravity & space radiation on microbes. Senatore G; Mastroleo F; Leys N; Mauriello G Future Microbiol; 2018 Jun; 13():831-847. PubMed ID: 29745771 [TBL] [Abstract][Full Text] [Related]
5. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Huang B; Li DG; Huang Y; Liu CT Mil Med Res; 2018 May; 5(1):18. PubMed ID: 29807538 [TBL] [Abstract][Full Text] [Related]
6. Microbial responses to microgravity and other low-shear environments. Nickerson CA; Ott CM; Wilson JW; Ramamurthy R; Pierson DL Microbiol Mol Biol Rev; 2004 Jun; 68(2):345-61. PubMed ID: 15187188 [TBL] [Abstract][Full Text] [Related]
7. Artificial gravity in space and in medical research. Cardús D J Gravit Physiol; 1994 May; 1(1):P19-22. PubMed ID: 11538748 [TBL] [Abstract][Full Text] [Related]
8. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data. Convertino VA J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376 [TBL] [Abstract][Full Text] [Related]
9. Payload hardware and experimental protocol development to enable future testing of the effect of space microgravity on the resistance to gentamicin of uropathogenic Escherichia coli and its σ Matin AC; Wang JH; Keyhan M; Singh R; Benoit M; Parra MP; Padgen MR; Ricco AJ; Chin M; Friedericks CR; Chinn TN; Cohen A; Henschke MB; Snyder TV; Lera MP; Ross SS; Mayberry CM; Choi S; Wu DT; Tan MX; Boone TD; Beasley CC; Piccini ME; Spremo SM Life Sci Space Res (Amst); 2017 Nov; 15():1-10. PubMed ID: 29198308 [TBL] [Abstract][Full Text] [Related]
10. Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. Kim W; Tengra FK; Shong J; Marchand N; Chan HK; Young Z; Pangule RC; Parra M; Dordick JS; Plawsky JL; Collins CH BMC Microbiol; 2013 Nov; 13():241. PubMed ID: 24192060 [TBL] [Abstract][Full Text] [Related]
11. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Crabbé A; Pycke B; Van Houdt R; Monsieurs P; Nickerson C; Leys N; Cornelis P Environ Microbiol; 2010 Jun; 12(6):1545-64. PubMed ID: 20236169 [TBL] [Abstract][Full Text] [Related]
12. Gravitational biology within the German Space Program: goals, achievements, and perspectives. Ruyters G; Friedrich U Protoplasma; 2006 Dec; 229(2-4):95-100. PubMed ID: 17180489 [TBL] [Abstract][Full Text] [Related]
13. Effects of microgravity on osteoblast growth. Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639 [TBL] [Abstract][Full Text] [Related]
14. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Nickerson CA; McLean RJC; Barrila J; Yang J; Thornhill SG; Banken LL; Porterfield DM; Poste G; Pellis NR; Ott CM Microbiol Mol Biol Rev; 2024 Sep; 88(3):e0014423. PubMed ID: 39158275 [TBL] [Abstract][Full Text] [Related]
15. Space flight effects on bacterial physiology. Leys NM; Hendrickx L; De Boever P; Baatout S; Mergeay M J Biol Regul Homeost Agents; 2004; 18(2):193-9. PubMed ID: 15471227 [TBL] [Abstract][Full Text] [Related]
16. The effect of simulated microgravity on bacteria from the Mir space station. Baker PW; Leff L Microgravity Sci Technol; 2004; 15(1):35-41. PubMed ID: 15773020 [TBL] [Abstract][Full Text] [Related]
17. Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Juergensmeyer MA; Juergensmeyer EA; Guikema JA Microgravity Sci Technol; 1999; 12(1):41-7. PubMed ID: 11543359 [TBL] [Abstract][Full Text] [Related]
18. Plant responses to real and simulated microgravity. Sathasivam M; Hosamani R; K Swamy B; Kumaran G S Life Sci Space Res (Amst); 2021 Feb; 28():74-86. PubMed ID: 33612182 [TBL] [Abstract][Full Text] [Related]
19. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. Rea G; Cristofaro F; Pani G; Pascucci B; Ghuge SA; Corsetto PA; Imbriani M; Visai L; Rizzo AM J Proteomics; 2016 Mar; 137():3-18. PubMed ID: 26571091 [TBL] [Abstract][Full Text] [Related]
20. Spaceflight and modeled microgravity effects on microbial growth and virulence. Rosenzweig JA; Abogunde O; Thomas K; Lawal A; Nguyen YU; Sodipe A; Jejelowo O Appl Microbiol Biotechnol; 2010 Jan; 85(4):885-91. PubMed ID: 19847423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]