These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 27630532)

  • 1. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure.
    Chino M; Maglio O; Nastri F; Pavone V; DeGrado WF; Lombardi A
    Eur J Inorg Chem; 2015 Jul; 2015(21):3371-3390. PubMed ID: 27630532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Covalently Linked Heterodimeric Four-Helix Bundles.
    Chino M; Leone L; Maglio O; Lombardi A
    Methods Enzymol; 2016; 580():471-99. PubMed ID: 27586346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric cooperation in a de novo-designed two-domain protein.
    Pirro F; Schmidt N; Lincoff J; Widel ZX; Polizzi NF; Liu L; Therien MJ; Grabe M; Chino M; Lombardi A; DeGrado WF
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33246-33253. PubMed ID: 33318174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein.
    Faiella M; Maglio O; Nastri F; Lombardi A; Lista L; Hagen WR; Pavone V
    Chemistry; 2012 Dec; 18(50):15960-71. PubMed ID: 23150230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle.
    Plegaria JS; Pecoraro VL
    Methods Mol Biol; 2016; 1414():187-96. PubMed ID: 27094292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions.
    Torres Martin de Rosales R; Faiella M; Farquhar E; Que L; Andreozzi C; Pavone V; Maglio O; Nastri F; Lombardi A
    J Biol Inorg Chem; 2010 Jun; 15(5):717-28. PubMed ID: 20225070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
    Afanasiev P; Sorokin AB
    Acc Chem Res; 2016 Apr; 49(4):583-93. PubMed ID: 26967682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-Dependent Oxidation.
    Chino M; Leone L; Maglio O; D'Alonzo D; Pirro F; Pavone V; Nastri F; Lombardi A
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15580-15583. PubMed ID: 29053213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial di-iron proteins: solution characterization of four helix bundles containing two distinct types of inter-helical loops.
    Maglio O; Nastri F; Calhoun JR; Lahr S; Wade H; Pavone V; DeGrado WF; Lombardi A
    J Biol Inorg Chem; 2005 Aug; 10(5):539-49. PubMed ID: 16091937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination.
    Oosterheert W; Reis J; Gros P; Mattevi A
    Acc Chem Res; 2020 Sep; 53(9):1969-1980. PubMed ID: 32815713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.
    Klein AS; Zeymer C
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 33635315
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Korendovych IV; DeGrado WF
    Q Rev Biophys; 2020 Feb; 53():e3. PubMed ID: 32041676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational de novo design of a four-helix bundle protein--DND_4HB.
    Murphy GS; Sathyamoorthy B; Der BS; Machius MC; Pulavarti SV; Szyperski T; Kuhlman B
    Protein Sci; 2015 Apr; 24(4):434-45. PubMed ID: 25287625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Artificial Enzymes: Insights into Protein Scaffolds.
    Hanreich S; Bonandi E; Drienovská I
    Chembiochem; 2023 Mar; 24(6):e202200566. PubMed ID: 36418221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.