These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27630610)

  • 1. Electrophysiological Evidence Reveals Differences between the Recognition of Microexpressions and Macroexpressions.
    Shen X; Wu Q; Zhao K; Fu X
    Front Psychol; 2016; 7():1346. PubMed ID: 27630610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Establishment of Weak Ecological Microexpressions Recognition Test (WEMERT): An Extension on EMERT.
    Yin M; Tian L; Hua W; Zhang J; Liu D
    Front Psychol; 2019; 10():275. PubMed ID: 30890973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Commentary: Electrophysiological Evidence Reveals Differences between the Recognition of Microexpressions and Macroexpressions.
    Matsumoto D; Hwang HC
    Front Psychol; 2019; 10():1293. PubMed ID: 31263437
    [No Abstract]   [Full Text] [Related]  

  • 4. The relevant resting-state brain activity of ecological microexpression recognition test (EMERT).
    Yin M; Zhang J; Shu D; Liu D
    PLoS One; 2020; 15(12):e0241681. PubMed ID: 33351809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain Activation in Contrasts of Microexpression Following Emotional Contexts.
    Zhang M; Zhao K; Qu F; Li K; Fu X
    Front Neurosci; 2020; 14():329. PubMed ID: 32410934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microexpressions Differentiate Truths From Lies About Future Malicious Intent.
    Matsumoto D; Hwang HC
    Front Psychol; 2018; 9():2545. PubMed ID: 30618966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Face-selective spectral changes in the human fusiform gyrus.
    Klopp J; Halgren E; Marinkovic K; Nenov V
    Clin Neurophysiol; 1999 Apr; 110(4):676-82. PubMed ID: 10378737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neural correlates of Chinese children's spontaneous trait inferences: Behavioral and electrophysiological evidence.
    Jia L; Zhang C; Heyman GD; Wang C; Wang J
    Psych J; 2020 Dec; 9(6):853-863. PubMed ID: 32844605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the duration of expressions on the recognition of microexpressions.
    Shen XB; Wu Q; Fu XL
    J Zhejiang Univ Sci B; 2012 Mar; 13(3):221-30. PubMed ID: 22374615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Dynamics of Target Detection via Wireless EEG in Embodied Cognition.
    He C; Chikara RK; Yeh CL; Ko LW
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Establishment of Pseudorandom Ecological Microexpression Recognition Test (PREMERT) and Its Relevant Resting-State Brain Activity.
    Zhang J; Yin M; Shu D; Liu D
    Front Hum Neurosci; 2020; 14():281. PubMed ID: 32848665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Priming effects on the N400 in the affective priming paradigm with facial expressions of emotion.
    Aguado L; Dieguez-Risco T; Méndez-Bértolo C; Pozo MA; Hinojosa JA
    Cogn Affect Behav Neurosci; 2013 Jun; 13(2):284-96. PubMed ID: 23263839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The establishment of the general microexpression recognition ability and its relevant brain activity.
    Zhang J; Yin M; Shu D; Liu D
    Front Hum Neurosci; 2022; 16():894702. PubMed ID: 36569473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theta and Alpha Oscillations during the Retention Period of Working Memory by rTMS Stimulating the Parietal Lobe.
    Li S; Jin JN; Wang X; Qi HZ; Liu ZP; Yin T
    Front Behav Neurosci; 2017; 11():170. PubMed ID: 28959194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of alcohol on the recognition of facial expressions and microexpressions of emotion: enhanced recognition of disgust and contempt.
    Felisberti F; Terry P
    Hum Psychopharmacol; 2015 Sep; 30(5):384-92. PubMed ID: 26073552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multivariate, spatiotemporal analysis of electromagnetic time-frequency data of recognition memory.
    Düzel E; Habib R; Schott B; Schoenfeld A; Lobaugh N; McIntosh AR; Scholz M; Heinze HJ
    Neuroimage; 2003 Feb; 18(2):185-97. PubMed ID: 12595175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can a Novel High-Density EEG Approach Disentangle the Differences of Visual Event Related Potential (N170), Elicited by Negative Facial Stimuli, in People with Subjective Cognitive Impairment?
    Lazarou I; Adam K; Georgiadis K; Tsolaki A; Nikolopoulos S; Yiannis Kompatsiaris I; Tsolaki M
    J Alzheimers Dis; 2018; 65(2):543-575. PubMed ID: 30103320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment in recognition of emotional facial expressions in Alzheimer's disease is represented by EEG theta and alpha responses.
    Güntekin B; Hanoğlu L; Aktürk T; Fide E; Emek-Savaş DD; Ruşen E; Yıldırım E; Yener GG
    Psychophysiology; 2019 Nov; 56(11):e13434. PubMed ID: 31264726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition Characteristics of Facial and Bodily Expressions: Evidence From ERPs.
    Li X
    Front Psychol; 2021; 12():680959. PubMed ID: 34290653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affective priming and cognitive load: Event-related potentials suggest an interplay of implicit affect misattribution and strategic inhibition.
    Gibbons H; Seib-Pfeifer LE; Koppehele-Gossel J; Schnuerch R
    Psychophysiology; 2018 Apr; 55(4):. PubMed ID: 28940207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.