These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 27630647)
1. Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.). Yue R; Lu C; Qi J; Han X; Yan S; Guo S; Liu L; Fu X; Chen N; Yin H; Chi H; Tie S Front Plant Sci; 2016; 7():1298. PubMed ID: 27630647 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Gu L; Zhao M; Ge M; Zhu S; Cheng B; Li X Ecotoxicol Environ Saf; 2019 Dec; 186():109744. PubMed ID: 31627093 [TBL] [Abstract][Full Text] [Related]
3. New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. Xu Z; Dong M; Peng X; Ku W; Zhao Y; Yang G Ecotoxicol Environ Saf; 2019 Apr; 171():301-312. PubMed ID: 30612018 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. Cheng D; Tan M; Yu H; Li L; Zhu D; Chen Y; Jiang M BMC Genomics; 2018 Sep; 19(1):709. PubMed ID: 30257650 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. Feng S; Yue R; Tao S; Yang Y; Zhang L; Xu M; Wang H; Shen C J Integr Plant Biol; 2015 Sep; 57(9):783-95. PubMed ID: 25557253 [TBL] [Abstract][Full Text] [Related]
6. Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots. Gao J; Luo M; Peng H; Chen F; Li W BMC Mol Biol; 2019 May; 20(1):14. PubMed ID: 31046674 [TBL] [Abstract][Full Text] [Related]
7. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome response of maize (Zea mays L.) seedlings to heat stress. Li ZG; Ye XY Protoplasma; 2022 Mar; 259(2):357-369. PubMed ID: 34117937 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Pan Y; Zhao SW; Tang XL; Wang S; Wang X; Zhang XX; Zhou JJ; Xi JH Genome; 2020 Jan; 63(1):1-12. PubMed ID: 31533014 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis revealed cadmium accumulation mechanisms in hyperaccumulator Siegesbeckia orientalis L. Xu X; Zhang S; Cheng Z; Li T; Jia Y; Wang G; Yang Z; Xian J; Yang Y; Zhou W Environ Sci Pollut Res Int; 2020 May; 27(15):18853-18865. PubMed ID: 32207009 [TBL] [Abstract][Full Text] [Related]
11. WGCNA Analysis Revealed the Hub Genes Related to Soil Cadmium Stress in Maize Kernel ( Li Y; Zhang Y; Luo H; Lv D; Yi Z; Duan M; Deng M Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421805 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based approach. Peng H; He X; Gao J; Ma H; Zhang Z; Shen Y; Pan G; Lin H Biochem Biophys Res Commun; 2015 Sep; 464(4):1040-1047. PubMed ID: 26212435 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome Analysis Reveals Cotton ( Han M; Lu X; Yu J; Chen X; Wang X; Malik WA; Wang J; Wang D; Wang S; Guo L; Chen C; Cui R; Yang X; Ye W Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30909634 [TBL] [Abstract][Full Text] [Related]
14. The maize WRKY transcription factor ZmWRKY64 confers cadmium tolerance in Arabidopsis and maize (Zea mays L.). Gu L; Hou Y; Sun Y; Chen X; Wang G; Wang H; Zhu B; Du X Plant Cell Rep; 2024 Jan; 43(2):44. PubMed ID: 38246890 [TBL] [Abstract][Full Text] [Related]
15. Temporal Comparative Transcriptome Analysis on Wheat Response to Acute Cd Toxicity at the Seedling Stage. Zaid IU; Faheem M; Zia MA; Abbas Z; Noor S; Ali GM; Haider Z Plants (Basel); 2023 Feb; 12(3):. PubMed ID: 36771731 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptome analysis reveals key genes and coordinated mechanisms in two rice cultivars differing in cadmium accumulation. Zhao S; Zhang Q; Xiao W; Chen D; Hu J; Gao N; Huang M; Ye X Chemosphere; 2023 Oct; 338():139489. PubMed ID: 37451631 [TBL] [Abstract][Full Text] [Related]
17. RNA-Seq Transcriptome Analysis of Rice Primary Roots Reveals the Role of Flavonoids in Regulating the Rice Primary Root Growth. Xu Y; Zou J; Zheng H; Xu M; Zong X; Wang L Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30871177 [TBL] [Abstract][Full Text] [Related]
18. Comparative Transcriptome Analysis of the Molecular Mechanism of the Hairy Roots of Sun Y; Lu Q; Cao Y; Wang M; Cheng X; Yan Q Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31888010 [No Abstract] [Full Text] [Related]
19. Full-Length Transcriptome Assembly of Italian Ryegrass Root Integrated with RNA-Seq to Identify Genes in Response to Plant Cadmium Stress. Hu Z; Zhang Y; He Y; Cao Q; Zhang T; Lou L; Cai Q Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32041113 [TBL] [Abstract][Full Text] [Related]
20. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. Cao ZZ; Lin XY; Yang YJ; Guan MY; Xu P; Chen MX BMC Plant Biol; 2019 Jun; 19(1):250. PubMed ID: 31185911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]