BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27631532)

  • 1. Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of Cochliobolus heterostrophus.
    Shalaby S; Larkov O; Lamdan NL; Goldshmidt-Tran O; Horwitz BA
    Environ Microbiol; 2016 Nov; 18(11):4188-4199. PubMed ID: 27631532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses.
    Igbaria A; Lev S; Rose MS; Lee BN; Hadar R; Degani O; Horwitz BA
    Mol Plant Microbe Interact; 2008 Jun; 21(6):769-80. PubMed ID: 18473669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-activity relationships delineate how the maize pathogen Cochliobolus heterostrophus uses aromatic compounds as signals and metabolites.
    Shalaby S; Horwitz BA; Larkov O
    Mol Plant Microbe Interact; 2012 Jul; 25(7):931-40. PubMed ID: 22452657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection.
    Lev S; Horwitz BA
    Plant Cell; 2003 Apr; 15(4):835-44. PubMed ID: 12671080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.
    Simaan H; Shalaby S; Hatoel M; Karinski O; Goldshmidt-Tran O; Horwitz BA
    Curr Genet; 2020 Feb; 66(1):187-203. PubMed ID: 31312934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fungal pathogen Cochliobolus heterostrophus responds to maize phenolics: novel small molecule signals in a plant-fungal interaction.
    Shanmugam V; Ronen M; Shalaby S; Larkov O; Rachamim Y; Hadar R; Rose MS; Carmeli S; Horwitz BA; Lev S
    Cell Microbiol; 2010 Oct; 12(10):1421-34. PubMed ID: 20438575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinases, Chk1 and Mps1, and the transcription factor Cmr1.
    Eliahu N; Igbaria A; Rose MS; Horwitz BA; Lev S
    Eukaryot Cell; 2007 Mar; 6(3):421-9. PubMed ID: 17237364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi.
    Yoshimi A; Kojima K; Takano Y; Tanaka C
    Eukaryot Cell; 2005 Nov; 4(11):1820-8. PubMed ID: 16278449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungicide activity through activation of a fungal signalling pathway.
    Kojima K; Takano Y; Yoshimi A; Tanaka C; Kikuchi T; Okuno T
    Mol Microbiol; 2004 Sep; 53(6):1785-96. PubMed ID: 15341655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals.
    Lev S; Hadar R; Amedeo P; Baker SE; Yoder OC; Horwitz BA
    Eukaryot Cell; 2005 Feb; 4(2):443-54. PubMed ID: 15701806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling by the pathogenicity-related MAP kinase of Cochliobolus heterostrophus correlates with its local accumulation rather than phosphorylation.
    Lev S; Tal H; Rose MS; Horwitz BA
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1093-103. PubMed ID: 19656044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens.
    Lev S; Sharon A; Hadar R; Ma H; Horwitz BA
    Proc Natl Acad Sci U S A; 1999 Nov; 96(23):13542-7. PubMed ID: 10557357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae.
    Oide S; Liu J; Yun SH; Wu D; Michev A; Choi MY; Horwitz BA; Turgeon BG
    Eukaryot Cell; 2010 Dec; 9(12):1867-80. PubMed ID: 21037181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus.
    Zhang N; MohdZainudin NA; Scher K; Condon BJ; Horwitz BA; Turgeon BG
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1473-85. PubMed ID: 23980626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize.
    Lu S; Gillian Turgeon B; Edwards MC
    Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogen Cochliobolus heterostrophus.
    Shalaby S; Larkov O; Lamdan NL; Horwitz BA
    FEMS Microbiol Lett; 2014 Jan; 350(1):83-9. PubMed ID: 24164316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental Roles of the Hog1 Protein Phosphatases of the Maize Pathogen
    Zuchman R; Koren R; Horwitz BA
    J Fungi (Basel); 2021 Jan; 7(2):. PubMed ID: 33530602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host physiology and pathogenic variation of Cochliobolus heterostrophus strains with mutations in the G protein alpha subunit, CGA1.
    Degani O; Maor R; Hadar R; Sharon A; Horwitz BA
    Appl Environ Microbiol; 2004 Aug; 70(8):5005-9. PubMed ID: 15294841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Mechanism Underlying Pathogenicity Inhibition by Chitosan in
    Yu H; Su L; Jia W; Jia M; Pan H; Zhang X
    J Agric Food Chem; 2024 Feb; 72(8):3926-3936. PubMed ID: 38365616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virulence, Host-Selective Toxin Production, and Development of Three Cochliobolus Phytopathogens Lacking the Sfp-Type 4'-Phosphopantetheinyl Transferase Ppt1.
    Zainudin NA; Condon B; De Bruyne L; Van Poucke C; Bi Q; Li W; Höfte M; Turgeon BG
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1130-41. PubMed ID: 26168137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.