BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27631812)

  • 1. Detection of SUMOylation in Plasmodium falciparum.
    Reiter KH; Matunis MJ
    Methods Mol Biol; 2016; 1475():283-90. PubMed ID: 27631812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of biochemically distinct properties of the small ubiquitin-related modifier (SUMO) conjugation pathway in Plasmodium falciparum.
    Reiter K; Mukhopadhyay D; Zhang H; Boucher LE; Kumar N; Bosch J; Matunis MJ
    J Biol Chem; 2013 Sep; 288(39):27724-36. PubMed ID: 23943616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel post-translational modification in Plasmodium falciparum: protein sumoylation in different cellular compartments.
    Issar N; Roux E; Mattei D; Scherf A
    Cell Microbiol; 2008 Oct; 10(10):1999-2011. PubMed ID: 18547337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and Structural Insights into Selective E1-E2 Interactions in the Human and Plasmodium falciparum SUMO Conjugation Systems.
    Reiter KH; Ramachandran A; Xia X; Boucher LE; Bosch J; Matunis MJ
    J Biol Chem; 2016 Feb; 291(8):3860-70. PubMed ID: 26697886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting SUMOylation in
    Sumam de Oliveira D; Kronenberger T; Palmisano G; Wrenger C; de Souza EE
    Front Cell Infect Microbiol; 2021; 11():685866. PubMed ID: 34178724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome wide in silico analysis of Plasmodium falciparum phosphatome.
    Pandey R; Mohmmed A; Pierrot C; Khalife J; Malhotra P; Gupta D
    BMC Genomics; 2014 Nov; 15():1024. PubMed ID: 25425018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress.
    Baczyk D; Audette MC; Coyaud E; Raught B; Kingdom JC
    J Physiol; 2018 May; 596(9):1587-1600. PubMed ID: 29468681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry.
    Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K
    Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Regulation of Chromatin by Dynamic SUMO Modifications.
    Wilson NR; Hochstrasser M
    Methods Mol Biol; 2016; 1475():23-38. PubMed ID: 27631795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging roles of desumoylating enzymes.
    Kim JH; Baek SH
    Biochim Biophys Acta; 2009 Mar; 1792(3):155-62. PubMed ID: 19162180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different proteomic strategies to identify genuine Small Ubiquitin-like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms.
    Iribarren PA; Berazategui MA; Bayona JC; Almeida IC; Cazzulo JJ; Alvarez VE
    Cell Microbiol; 2015 Oct; 17(10):1413-22. PubMed ID: 26096196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic Identification and Analysis of Arginine-Methylated Proteins of Plasmodium falciparum at Asexual Blood Stages.
    Zeeshan M; Kaur I; Joy J; Saini E; Paul G; Kaushik A; Dabral S; Mohmmed A; Gupta D; Malhotra P
    J Proteome Res; 2017 Feb; 16(2):368-383. PubMed ID: 27933903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concepts and Methodologies to Study Protein SUMOylation: An Overview.
    Matunis MJ; Rodriguez MS
    Methods Mol Biol; 2016; 1475():3-22. PubMed ID: 27631794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUMOylation pathway in Trypanosoma cruzi: functional characterization and proteomic analysis of target proteins.
    Bayona JC; Nakayasu ES; Laverrière M; Aguilar C; Sobreira TJ; Choi H; Nesvizhskii AI; Almeida IC; Cazzulo JJ; Alvarez VE
    Mol Cell Proteomics; 2011 Dec; 10(12):M110.007369. PubMed ID: 21832256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum.
    Foth BJ; Zhang N; Chaal BK; Sze SK; Preiser PR; Bozdech Z
    Mol Cell Proteomics; 2011 Aug; 10(8):M110.006411. PubMed ID: 21558492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum.
    Navale R; Atul ; Allanki AD; Sijwali PS
    PLoS One; 2014; 9(11):e113220. PubMed ID: 25426852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin-related protein Arp4 regulates euchromatic gene expression and development through H2A.Z deposition in blood-stage Plasmodium falciparum.
    Liu H; Cui XY; Xu DD; Wang F; Meng LW; Zhao YM; Liu M; Shen SJ; He XH; Fang Q; Tao ZY; Jiang CZ; Zhang QF; Gu L; Xia H
    Parasit Vectors; 2020 Jun; 13(1):314. PubMed ID: 32552779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of critical node-dependent unidirectional cross-talk of Plasmodium SUMO pathway proteins.
    Singh JS; Sajeev T K ; Panigrahi R; Cherry P; Panchakshari NA; Shukla VK; Kumar A; Mishra RK
    Biophys J; 2022 Apr; 121(8):1367-1380. PubMed ID: 35331687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring parasite heterogeneity using single-cell RNA-seq reveals a gene signature among sexual stage Plasmodium falciparum parasites.
    Ngara M; Palmkvist M; Sagasser S; Hjelmqvist D; Björklund ÅK; Wahlgren M; Ankarklev J; Sandberg R
    Exp Cell Res; 2018 Oct; 371(1):130-138. PubMed ID: 30096287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia.
    Di Genova BM; da Silva RC; da Cunha JPC; Gargantini PR; Mortara RA; Tonelli RR
    J Eukaryot Microbiol; 2017 Jul; 64(4):491-503. PubMed ID: 27864857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.