These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 27631885)

  • 1. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.
    Balke N; Jesse S; Yu P; Ben Carmichael ; Kalinin SV; Tselev A
    Nanotechnology; 2016 Oct; 27(42):425707. PubMed ID: 27631885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoelectric displacement mapping of compliant surfaces by constant-excitation frequency-modulation piezoresponse force microscopy.
    Labardi M; Magnani A; Capaccioli S
    Nanotechnology; 2020 Feb; 31(7):075707. PubMed ID: 31665710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.
    Balke N; Jesse S; Carmichael B; Okatan MB; Kravchenko II; Kalinin SV; Tselev A
    Nanotechnology; 2017 Jan; 28(6):065704. PubMed ID: 28050969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.
    Biczysko P; Dzierka A; Jóźwiak G; Rudek M; Gotszalk T; Janus P; Grabiec P; Rangelow IW
    Ultramicroscopy; 2018 Jan; 184(Pt A):199-208. PubMed ID: 28950210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultimate Decoupling between Surface Topography and Material Functionality in Atomic Force Microscopy Using an Inner-Paddled Cantilever.
    Dharmasena SM; Yang Z; Kim S; Bergman LA; Vakakis AF; Cho H
    ACS Nano; 2018 Jun; 12(6):5559-5569. PubMed ID: 29800518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning-fork-based piezoresponse force microscopy.
    Labardi M; Capaccioli S
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34284362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic-free piezoresponse force microscopy.
    Kim S; Seol D; Lu X; Alexe M; Kim Y
    Sci Rep; 2017 Jan; 7():41657. PubMed ID: 28139715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational shape tracking of atomic force microscopy cantilevers for improved sensitivity and accuracy of nanomechanical measurements.
    Wagner R; Killgore JP; Tung RC; Raman A; Hurley DC
    Nanotechnology; 2015 Jan; 26(4):045701. PubMed ID: 25556928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Electromechanical Atomic Force Microscopy.
    Collins L; Liu Y; Ovchinnikova OS; Proksch R
    ACS Nano; 2019 Jul; 13(7):8055-8066. PubMed ID: 31268678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the contact resonance frequencies in atomic force microscopy as a method for surface characterisation (invited).
    Rabe U; Kopycinska M; Hirsekorn S; Arnold W
    Ultrasonics; 2002 May; 40(1-8):49-54. PubMed ID: 12159988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy.
    Rodriguez BJ; Jesse S; Baddorf AP; Kalinin SV
    Phys Rev Lett; 2006 Jun; 96(23):237602. PubMed ID: 16803404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy.
    Seol D; Kang S; Sun C; Kim Y
    Ultramicroscopy; 2019 Dec; 207():112839. PubMed ID: 31494481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.
    Rosenberger MR; Chen S; Prater CB; King WP
    Nanotechnology; 2017 Jan; 28(4):044003. PubMed ID: 28000611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic behaviour in piezoresponse force microscopy.
    Jesse S; Baddorf AP; Kalinin SV
    Nanotechnology; 2006 Mar; 17(6):1615-28. PubMed ID: 26558568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.
    Romanyuk K; Luchkin SY; Ivanov M; Kalinin A; Kholkin AL
    Microsc Microanal; 2015 Feb; 21(1):154-63. PubMed ID: 25555020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of frequency-modulated atomic force microscopy for interpretation of noncontact piezoresponse measurements.
    Labardi M
    Nanotechnology; 2020 Mar; 31(24):245705. PubMed ID: 32109904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-order electromechanical response of thin films by contact resonance piezoresponse force microscopy.
    Harnagea C; Pignolet A; Alexe M; Hesse D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2309-22. PubMed ID: 17186913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.