These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27631990)

  • 21. Multiple sclerosis fatigue is associated with reduced psychomotor vigilance.
    Rotstein D; O'Connor P; Lee L; Murray BJ
    Can J Neurol Sci; 2012 Mar; 39(2):180-4. PubMed ID: 22343150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new likelihood ratio metric for the psychomotor vigilance test and its sensitivity to sleep loss.
    Basner M; Mcguire S; Goel N; Rao H; Dinges DF
    J Sleep Res; 2015 Dec; 24(6):702-13. PubMed ID: 26118830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustained attention performance during sleep deprivation: evidence of state instability.
    Doran SM; Van Dongen HP; Dinges DF
    Arch Ital Biol; 2001 Apr; 139(3):253-67. PubMed ID: 11330205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss.
    Bermudez EB; Klerman EB; Czeisler CA; Cohen DA; Wyatt JK; Phillips AJ
    PLoS One; 2016; 11(3):e0151770. PubMed ID: 27019198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of a touchscreen psychomotor vigilance task.
    Arsintescu L; Kato KH; Cravalho PF; Feick NH; Stone LS; Flynn-Evans EE
    Accid Anal Prev; 2019 May; 126():173-176. PubMed ID: 29198969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sleep deprivation enhances inter-stimulus interval effect on vigilant attention performance.
    Yang FN; Xu S; Chai Y; Basner M; Dinges DF; Rao H
    Sleep; 2018 Dec; 41(12):. PubMed ID: 30265364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The validity of psychomotor vigilance tasks of less than 10-minute duration.
    Loh S; Lamond N; Dorrian J; Roach G; Dawson D
    Behav Res Methods Instrum Comput; 2004 May; 36(2):339-46. PubMed ID: 15354700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue-related risk perception among emergency physicians working extended shifts.
    Berastegui P; Jaspar M; Ghuysen A; Nyssen AS
    Appl Ergon; 2020 Jan; 82():102914. PubMed ID: 31422293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of sleep deprivation on human postural control, subjective fatigue assessment and psychomotor performance.
    Ma J; Yao YJ; Ma RM; Li JQ; Wang T; Li XJ; Han WQ; Hu WD; Zhang ZM
    J Int Med Res; 2009; 37(5):1311-20. PubMed ID: 19930836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal-to-Noise Ratio in PVT Performance as a Cognitive Measure of the Effect of Sleep Deprivation on the Fidelity of Information Processing.
    Chavali VP; Riedy SM; Van Dongen HP
    Sleep; 2017 Mar; 40(3):. PubMed ID: 28364430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2B-Alert App 2.0: personalized caffeine recommendations for optimal alertness.
    Vital-Lopez FG; Doty TJ; Anlap I; Killgore WDS; Reifman J
    Sleep; 2023 Jul; 46(7):. PubMed ID: 36987747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-on-Task Effect During Sleep Deprivation in Healthy Young Adults Is Modulated by Dopamine Transporter Genotype.
    Satterfield BC; Wisor JP; Schmidt MA; Van Dongen HPA
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29029252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classifying attentional vulnerability to total sleep deprivation using baseline features of Psychomotor Vigilance Test performance.
    Chua EC; Sullivan JP; Duffy JF; Klerman EB; Lockley SW; Kristal BS; Czeisler CA; Gooley JJ
    Sci Rep; 2019 Aug; 9(1):12102. PubMed ID: 31431644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing the neurocognitive effects of 40 h sustained wakefulness in patients with untreated OSA and healthy controls.
    Wong KK; Marshall NS; Grunstein RR; Dodd MJ; Rogers NL
    J Sleep Res; 2008 Sep; 17(3):322-30. PubMed ID: 18522688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The impact of sustained wakefulness and time-of-day on OSPAT performance.
    Petrilli RM; Jay SM; Dawson D; Lamond N
    Ind Health; 2005 Jan; 43(1):186-92. PubMed ID: 15732321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient and regular patterns of nighttime sleep are related to increased vulnerability to microsleeps following a single night of sleep restriction.
    Innes CR; Poudel GR; Jones RD
    Chronobiol Int; 2013 Nov; 30(9):1187-96. PubMed ID: 23998288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of eye metrics as a detector of fatigue.
    McKinley RA; McIntire LK; Schmidt R; Repperger DW; Caldwell JA
    Hum Factors; 2011 Aug; 53(4):403-14. PubMed ID: 21901937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sharp and sleepy: evidence for dissociation between sleep pressure and nocturnal performance.
    Galliaud E; Taillard J; Sagaspe P; Valtat C; Bioulac B; Philip P
    J Sleep Res; 2008 Mar; 17(1):11-5. PubMed ID: 18275550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classifying vulnerability to sleep deprivation using baseline measures of psychomotor vigilance.
    Patanaik A; Kwoh CK; Chua EC; Gooley JJ; Chee MW
    Sleep; 2015 May; 38(5):723-34. PubMed ID: 25325482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.