These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27632026)

  • 1. Ultrafast Photodoping and Plasmon Dynamics in Fluorine-Indium Codoped Cadmium Oxide Nanocrystals for All-Optical Signal Manipulation at Optical Communication Wavelengths.
    Kriegel I; Urso C; Viola D; De Trizio L; Scotognella F; Cerullo G; Manna L
    J Phys Chem Lett; 2016 Oct; 7(19):3873-3881. PubMed ID: 27632026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Near-Infrared Localized Surface Plasmon Resonance of F, In-Codoped CdO Nanocrystals.
    Giannuzzi R; De Donato F; De Trizio L; Monteduro AG; Maruccio G; Scarfiello R; Qualtieri A; Manna L
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39921-39929. PubMed ID: 31577409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals.
    Zandi O; Agrawal A; Shearer AB; Reimnitz LC; Dahlman CJ; Staller CM; Milliron DJ
    Nat Mater; 2018 Aug; 17(8):710-717. PubMed ID: 29988146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals.
    Schimpf AM; Lounis SD; Runnerstrom EL; Milliron DJ; Gamelin DR
    J Am Chem Soc; 2015 Jan; 137(1):518-24. PubMed ID: 25490191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between Depletion Effects and Coupling in the Plasmon Modulation of Doped Metal Oxide Nanocrystals.
    Tandon B; Agrawal A; Heo S; Milliron DJ
    Nano Lett; 2019 Mar; 19(3):2012-2019. PubMed ID: 30794418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials.
    Liu X; Swihart MT
    Chem Soc Rev; 2014 Jun; 43(11):3908-20. PubMed ID: 24566528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodoping and Transient Spectroscopies of Copper-Doped CdSe/CdS Nanocrystals.
    Hughes KE; Hartstein KH; Gamelin DR
    ACS Nano; 2018 Jan; 12(1):718-728. PubMed ID: 29286633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Band-Edge Potentials and Charge Storage in Colloidal Tin-Doped Indium Oxide (ITO) Nanocrystals.
    Araujo JJ; Brozek CK; Liu H; Merkulova A; Li X; Gamelin DR
    ACS Nano; 2021 Sep; 15(9):14116-14124. PubMed ID: 34387483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Responsive Plasmon Modulation in Dopant-Segregated Nanocrystals.
    Tandon B; Gibbs SL; Dean C; Milliron DJ
    Nano Lett; 2023 Feb; 23(3):908-915. PubMed ID: 36656798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping.
    Ye X; Fei J; Diroll BT; Paik T; Murray CB
    J Am Chem Soc; 2014 Aug; 136(33):11680-6. PubMed ID: 25066599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals.
    Agrawal A; Cho SH; Zandi O; Ghosh S; Johns RW; Milliron DJ
    Chem Rev; 2018 Mar; 118(6):3121-3207. PubMed ID: 29400955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution processable and optically switchable 1D photonic structures.
    PaternĂ² GM; Iseppon C; D'Altri A; Fasanotti C; Merati G; Randi M; Desii A; Pogna EAA; Viola D; Cerullo G; Scotognella F; Kriegel I
    Sci Rep; 2018 Feb; 8(1):3517. PubMed ID: 29476146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.
    Runnerstrom EL; Bergerud A; Agrawal A; Johns RW; Dahlman CJ; Singh A; Selbach SM; Milliron DJ
    Nano Lett; 2016 May; 16(5):3390-8. PubMed ID: 27111427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Q-switching Yb
    Zhan Y; Wang Y; Long J; Zu J; Wang L; Wang C; Qu T; Liu Q
    Opt Lett; 2017 Jul; 42(13):2619-2622. PubMed ID: 28957299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Bidirectional Plasmon-Plasmon Coupling-Induced Hot Charge Carriers in Dual Plasmonic Au/CuS Nanocrystals.
    Bessel P; Niebur A; Kranz D; Lauth J; Dorfs D
    Small; 2023 Mar; 19(12):e2206379. PubMed ID: 36642834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large scale indium tin oxide (ITO) one dimensional gratings for ultrafast signal modulation in the visible spectral region.
    Guizzardi M; Bonfadini S; Moscardi L; Kriegel I; Scotognella F; Criante L
    Phys Chem Chem Phys; 2020 Apr; 22(13):6881-6887. PubMed ID: 32179881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal Near-Infrared and Mid-Infrared Optical Modulation for Ultrafast Pulse Generation Enabled by Colloidal Plasmonic Semiconductor Nanocrystals.
    Guo Q; Yao Y; Luo ZC; Qin Z; Xie G; Liu M; Kang J; Zhang S; Bi G; Liu X; Qiu J
    ACS Nano; 2016 Oct; 10(10):9463-9469. PubMed ID: 27622468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals.
    Diroll BT; Guo P; Chang RP; Schaller RD
    ACS Nano; 2016 Nov; 10(11):10099-10105. PubMed ID: 27754640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavily Doped Semiconductor Colloidal Nanocrystals as Ultra-Broadband Switches for Near-Infrared and Mid-Infrared Pulse Lasers.
    Wei R; Tian X; Luo H; Liu M; Yang Z; Luo Z; Zhu H; Guo H; Li J; Qiu J
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40416-40423. PubMed ID: 31592628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.