These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27632176)

  • 1. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture.
    Li L; Wang P; Chao KH; Zhou Y; Xie Y
    PLoS One; 2016; 11(9):e0163004. PubMed ID: 27632176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An interpretable online prediction method for remaining useful life of lithium-ion batteries.
    Li Z; Shen S; Ye Y; Cai Z; Zhen A
    Sci Rep; 2024 May; 14(1):12541. PubMed ID: 38821997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries.
    Ali MU; Zafar A; Masood H; Kallu KD; Khan MA; Tariq U; Kim YJ; Chang B
    Comput Intell Neurosci; 2022; 2022():1575303. PubMed ID: 35733564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries.
    Jafari S; Byun YC
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.
    Zhang C; He Y; Yuan L; Xiang S; Wang J
    Comput Intell Neurosci; 2015; 2015():918305. PubMed ID: 26413090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning.
    Pugalenthi K; Park H; Hussain S; Raghavan N
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Battery Cycle Life Prediction Using a Hybrid Data-Driven Model Incorporating Linear Support Vector Regression and Gaussian.
    Alipour M; Tavallaey SS; Andersson AM; Brandell D
    Chemphyschem; 2022 Apr; 23(7):e202100829. PubMed ID: 35075749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review on the Prediction of Health State and Serving Life of Lithium-Ion Batteries.
    Pang X; Zhong S; Wang Y; Yang W; Zheng W; Sun G
    Chem Rec; 2022 Oct; 22(10):e202200131. PubMed ID: 35785467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model.
    Cai Y; Li W; Zahid T; Zheng C; Zhang Q; Xu K
    Heliyon; 2023 Jul; 9(7):e17754. PubMed ID: 37456048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.
    Yang Q; Xu J; Cao B; Li X
    PLoS One; 2017; 12(2):e0172424. PubMed ID: 28212405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual Life Prediction of Lithium Batteries Based on Data Mining.
    Ma D; Qin X
    Comput Intell Neurosci; 2022; 2022():4520160. PubMed ID: 35958783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiently photo-charging lithium-ion battery by perovskite solar cell.
    Xu J; Chen Y; Dai L
    Nat Commun; 2015 Aug; 6():8103. PubMed ID: 26311589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental characteristics comparison of Li-ion batteries and Ni-MH batteries under the uncertainty of cycle performance.
    Yu Y; Wang X; Wang D; Huang K; Wang L; Bao L; Wu F
    J Hazard Mater; 2012 Aug; 229-230():455-60. PubMed ID: 22763226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure Analysis of Batteries Using Synchrotron-based Hard X-ray Microtomography.
    Harry KJ; Parkinson DY; Balsara NP
    J Vis Exp; 2015 Aug; (102):e53021. PubMed ID: 26382323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Data Preprocessing-Based Hierarchical Attention BiLSTM Network for Remaining Useful Life Prediction of Spacecraft Lithium-Ion Batteries.
    Luo T; Liu M; Shi P; Duan G; Cao X
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37725745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling.
    Guo X; Cao X; Huang G; Tian Q; Sun H
    J Environ Manage; 2017 Aug; 198(Pt 1):84-89. PubMed ID: 28453989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life Prediction of Battery Using a Neural Gaussian Process with Early Discharge Characteristics.
    Yin A; Tan Z; Tan J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Health State Estimation of On-Board Lithium-Ion Batteries Based on GMM-BID Model.
    Feng S; Wang A; Cai J; Zuo H; Zhang Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for state-of-health prediction of lithium-ion batteries based on machine learning.
    Shu X; Shen S; Shen J; Zhang Y; Li G; Chen Z; Liu Y
    STAR Protoc; 2022 Jun; 3(2):101272. PubMed ID: 35403003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.