These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27632418)

  • 1. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules.
    Takeda S; Kaneko H; Funatsu K
    J Chem Inf Model; 2016 Oct; 56(10):1885-1893. PubMed ID: 27632418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of the Structure Generator DAECS with Respect to Structural Diversity.
    Inoue T; Tanaka K; Kotera M; Funatsu K
    Mol Inform; 2021 Apr; 40(4):e2000225. PubMed ID: 33237627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Analysis of Structure-Based Interactions for Novel H₁-Antihistamines.
    Yang Y; Li Y; Pan Y; Wang J; Lin F; Wang C; Zhang S; Yang L
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26797608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Ligand Binding Hot Spots of the Histamine H
    Kuhne S; Kooistra AJ; Bosma R; Bortolato A; Wijtmans M; Vischer HF; Mason JS; de Graaf C; de Esch IJ; Leurs R
    J Med Chem; 2016 Oct; 59(19):9047-9061. PubMed ID: 27643714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scoring of de novo Designed Chemical Entities by Macromolecular Target Prediction.
    Button AL; Hiss JA; Schneider P; Schneider G
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27643811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design.
    Skalic M; Sabbadin D; Sattarov B; Sciabola S; De Fabritiis G
    Mol Pharm; 2019 Oct; 16(10):4282-4291. PubMed ID: 31437001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FSees: Customized Enumeration of Chemical Subspaces with Limited Main Memory Consumption.
    Lauck F; Rarey M
    J Chem Inf Model; 2016 Sep; 56(9):1641-53. PubMed ID: 27617881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a New De Novo Design Algorithm for Exploring Chemical Space.
    Mishima K; Kaneko H; Funatsu K
    Mol Inform; 2014 Dec; 33(11-12):779-89. PubMed ID: 27485424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces.
    Kim J; Kim H; Park SB
    J Am Chem Soc; 2014 Oct; 136(42):14629-38. PubMed ID: 25310802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating sampling techniques and inverse virtual screening: toward the discovery of artificial peptide-based receptors for ligands.
    Pérez GM; Salomón LA; Montero-Cabrera LA; de la Vega JM; Mascini M
    Mol Divers; 2016 May; 20(2):421-38. PubMed ID: 26553204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of chemical libraries with potentially bioactive molecules applying a maximum common substructure concept.
    Lisurek M; Rupp B; Wichard J; Neuenschwander M; von Kries JP; Frank R; Rademann J; Kühne R
    Mol Divers; 2010 May; 14(2):401-8. PubMed ID: 19685275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic tailoring and transplanting: a practical method that makes virtual screening more useful.
    Li Y; Zhao Y; Liu Z; Wang R
    J Chem Inf Model; 2011 Jun; 51(6):1474-91. PubMed ID: 21520918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FOG: Fragment Optimized Growth algorithm for the de novo generation of molecules occupying druglike chemical space.
    Kutchukian PS; Lou D; Shakhnovich EI
    J Chem Inf Model; 2009 Jul; 49(7):1630-42. PubMed ID: 19527020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of novel TLR4 ligands by in silico screening and their functional and structural characterization in vitro.
    Honegr J; Malinak D; Dolezal R; Soukup O; Benkova M; Hroch L; Benek O; Janockova J; Kuca K; Prymula R
    Eur J Med Chem; 2018 Feb; 146():38-46. PubMed ID: 29407964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.
    Sattarov B; Baskin II; Horvath D; Marcou G; Bjerrum EJ; Varnek A
    J Chem Inf Model; 2019 Mar; 59(3):1182-1196. PubMed ID: 30785751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ring-system-based Chemical Structure Enumeration for de Novo Design].
    Miyao T; Kaneko H; Funatsu K
    Yakugaku Zasshi; 2016; 136(1):101-6. PubMed ID: 26725676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-objective Genetic Algorithm for De Novo Drug Design (MoGADdrug).
    Devi RV; Sathya SS; Coumar MS
    Curr Comput Aided Drug Des; 2021; 17(3):445-457. PubMed ID: 32562528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement.
    Pala D; Beuming T; Sherman W; Lodola A; Rivara S; Mor M
    J Chem Inf Model; 2013 Apr; 53(4):821-35. PubMed ID: 23541165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaffold hopping with virtual screening from IP3 to a drug-like partial agonist of the inositol trisphosphate receptor.
    Vasudevan SR; Singh N; Churchill GC
    Chembiochem; 2014 Dec; 15(18):2774-82. PubMed ID: 25399672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.