BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 27632699)

  • 1. Dynamic interactions of amelogenin with hydroxyapatite surfaces are dependent on protein phosphorylation and solution pH.
    Connelly C; Cicuto T; Leavitt J; Petty A; Litman A; Margolis HC; Gerdon AE
    Colloids Surf B Biointerfaces; 2016 Dec; 148():377-384. PubMed ID: 27632699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of calcium phosphate formation by amelogenins under physiological conditions.
    Kwak SY; Green S; Wiedemann-Bidlack FB; Beniash E; Yamakoshi Y; Simmer JP; Margolis HC
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1(Suppl 1):103-11. PubMed ID: 22243235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of calcium phosphate formation by native amelogenins in vitro.
    Kwak SY; Kim S; Yamakoshi Y; Simmer JP; Beniash E; Margolis HC
    Connect Tissue Res; 2014 Aug; 55 Suppl 1(0):21-4. PubMed ID: 25158174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CryoTEM study of effects of phosphorylation on the hierarchical assembly of porcine amelogenin and its regulation of mineralization in vitro.
    Fang PA; Margolis HC; Conway JF; Simmer JP; Beniash E
    J Struct Biol; 2013 Aug; 183(2):250-7. PubMed ID: 23707542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulation of calcium phosphate formation in vitro.
    Wiedemann-Bidlack FB; Kwak SY; Beniash E; Yamakoshi Y; Simmer JP; Margolis HC
    J Struct Biol; 2011 Feb; 173(2):250-60. PubMed ID: 21074619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MMP20 Proteolysis of Native Amelogenin Regulates Mineralization In Vitro.
    Kwak SY; Yamakoshi Y; Simmer JP; Margolis HC
    J Dent Res; 2016 Dec; 95(13):1511-1517. PubMed ID: 27558264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-Defined Energetic Shifts Control the Disassembly Kinetics and Microstructure of Amelogenin Adsorbed onto Hydroxyapatite (100).
    Tao J; Buchko GW; Shaw WJ; De Yoreo JJ; Tarasevich BJ
    Langmuir; 2015 Sep; 31(38):10451-60. PubMed ID: 26381243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes in amelogenin upon self-assembly and mineral interactions.
    Beniash E; Simmer JP; Margolis HC
    J Dent Res; 2012 Oct; 91(10):967-72. PubMed ID: 22933608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of amelogenin on the transforming surface microstructures of Bioglass in a calcifying solution.
    Wen HB; Moradian-Oldak J; Zhong JP; Greenspan DC; Fincham AG
    J Biomed Mater Res; 2000 Dec; 52(4):762-73. PubMed ID: 11033560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite Formation Coexists with Amyloid-like Self-Assembly of Human Amelogenin.
    Zhang J; Wang J; Ma C; Lu J
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32331340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controls of nature: Secondary, tertiary, and quaternary structure of the enamel protein amelogenin in solution and on hydroxyapatite.
    Shaw WJ; Tarasevich BJ; Buchko GW; Arachchige RMJ; Burton SD
    J Struct Biol; 2020 Dec; 212(3):107630. PubMed ID: 32979496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly.
    Fan Y; Sun Z; Wang R; Abbott C; Moradian-Oldak J
    Biomaterials; 2007 Jul; 28(19):3034-42. PubMed ID: 17382381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Phosphorylation and Mineral Binding Affect the Secondary Structure of the Leucine-Rich Amelogenin Peptide.
    Yamazaki H; Beniash E; Yamakoshi Y; Simmer JP; Margolis HC
    Front Physiol; 2017; 8():450. PubMed ID: 28706493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus.
    Uskoković V; Odsinada R; Djordjevic S; Habelitz S
    Arch Oral Biol; 2011 Jun; 56(6):521-32. PubMed ID: 21146151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional roles of prolines at amelogenin C terminal during tooth enamel formation.
    Zhu L; Tanimoto K; Le T; DenBesten PK; Li W
    Cells Tissues Organs; 2009; 189(1-4):203-6. PubMed ID: 18701806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for charge domains on developing enamel crystal surfaces.
    Kirkham J; Zhang J; Brookes SJ; Shore RC; Wood SR; Smith DA; Wallwork ML; Ryu OH; Robinson C
    J Dent Res; 2000 Dec; 79(12):1943-7. PubMed ID: 11201043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of hydroxyapatite surface coverage by amelogenin nanospheres following the Langmuir model for protein adsorption.
    Bouropoulos N; Moradian-Oldak J
    Calcif Tissue Int; 2003 May; 72(5):599-603. PubMed ID: 12704567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of the Role of Amelogenin Protein in Enamel Formation and Novel Experimental Techniques to Study its Function.
    Ali S; Farooq I
    Protein Pept Lett; 2019; 26(12):880-886. PubMed ID: 31364509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro.
    Kwak SY; Wiedemann-Bidlack FB; Beniash E; Yamakoshi Y; Simmer JP; Litman A; Margolis HC
    J Biol Chem; 2009 Jul; 284(28):18972-9. PubMed ID: 19443653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of secondary structure in the entropically driven amelogenin self-assembly.
    Lakshminarayanan R; Fan D; Du C; Moradian-Oldak J
    Biophys J; 2007 Nov; 93(10):3664-74. PubMed ID: 17704165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.