These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 27632792)
1. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. Duarte AC; Hrynchak MV; Gonçalves I; Quintela T; Santos CR J Neuroendocrinol; 2016 Nov; 28(11):. PubMed ID: 27632792 [TBL] [Abstract][Full Text] [Related]
2. Effects of Androgens on the Amyloid-β Protein in Alzheimer's Disease. Lei Y; Renyuan Z Endocrinology; 2018 Dec; 159(12):3885-3894. PubMed ID: 30215697 [TBL] [Abstract][Full Text] [Related]
5. The impact of luteinizing hormone and testosterone on beta amyloid (Aβ) accumulation: Animal and human clinical studies. Verdile G; Asih PR; Barron AM; Wahjoepramono EJ; Ittner LM; Martins RN Horm Behav; 2015 Nov; 76():81-90. PubMed ID: 26122291 [TBL] [Abstract][Full Text] [Related]
6. Age, Sex Hormones, and Circadian Rhythm Regulate the Expression of Amyloid-Beta Scavengers at the Choroid Plexus. Duarte AC; Furtado A; Hrynchak MV; Costa AR; Talhada D; Gonçalves I; Lemos MC; Quintela T; Santos CRA Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957439 [TBL] [Abstract][Full Text] [Related]
7. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain. Henderson BW; Gentry EG; Rush T; Troncoso JC; Thambisetty M; Montine TJ; Herskowitz JH J Neurochem; 2016 Aug; 138(4):525-31. PubMed ID: 27246255 [TBL] [Abstract][Full Text] [Related]
8. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer's disease. Xiang Y; Bu XL; Liu YH; Zhu C; Shen LL; Jiao SS; Zhu XY; Giunta B; Tan J; Song WH; Zhou HD; Zhou XF; Wang YJ Acta Neuropathol; 2015 Oct; 130(4):487-99. PubMed ID: 26363791 [TBL] [Abstract][Full Text] [Related]
9. Total flavonoid extract from Dracoephalum moldavica L. attenuates β-amyloid-induced toxicity through anti-amyloidogenesic and neurotrophic pathways. Liu QS; Jiang HL; Wang Y; Wang LL; Zhang JX; He CH; Shao S; Zhang TT; Xing JG; Liu R Life Sci; 2018 Jan; 193():214-225. PubMed ID: 29100755 [TBL] [Abstract][Full Text] [Related]
10. Impairments in brain-to-blood transport of amyloid-β and reabsorption of cerebrospinal fluid in an animal model of Alzheimer's disease are reversed by antisense directed against amyloid-β protein precursor. Banks WA; Kumar VB; Farr SA; Nakaoke R; Robinson SM; Morley JE J Alzheimers Dis; 2011; 23(4):599-605. PubMed ID: 21098986 [TBL] [Abstract][Full Text] [Related]
11. RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Deane R; Wu Z; Zlokovic BV Stroke; 2004 Nov; 35(11 Suppl 1):2628-31. PubMed ID: 15459432 [TBL] [Abstract][Full Text] [Related]
12. Clearance of cerebral Aβ in Alzheimer's disease: reassessing the role of microglia and monocytes. Zuroff L; Daley D; Black KL; Koronyo-Hamaoui M Cell Mol Life Sci; 2017 Jun; 74(12):2167-2201. PubMed ID: 28197669 [TBL] [Abstract][Full Text] [Related]
13. Regulation of beta-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer's disease. Jaya Prasanthi RP; Schommer E; Thomasson S; Thompson A; Feist G; Ghribi O Mech Ageing Dev; 2008 Nov; 129(11):649-55. PubMed ID: 18845178 [TBL] [Abstract][Full Text] [Related]
14. Role of Ageing and Oxidative Stress in Regulation of Amyloid-Degrading Enzymes and Development of Neurodegeneration. Nalivaeva NN; Turner AJ Curr Aging Sci; 2017; 10(1):32-40. PubMed ID: 27834125 [TBL] [Abstract][Full Text] [Related]
15. Age-Dependent Regulation of the Blood-Brain Barrier Influx/Efflux Equilibrium of Amyloid-β Peptide in a Mouse Model of Alzheimer's Disease (3xTg-AD). Do TM; Dodacki A; Alata W; Calon F; Nicolic S; Scherrmann JM; Farinotti R; Bourasset F J Alzheimers Dis; 2016; 49(2):287-300. PubMed ID: 26484906 [TBL] [Abstract][Full Text] [Related]
16. Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. Bell RD; Sagare AP; Friedman AE; Bedi GS; Holtzman DM; Deane R; Zlokovic BV J Cereb Blood Flow Metab; 2007 May; 27(5):909-18. PubMed ID: 17077814 [TBL] [Abstract][Full Text] [Related]
17. P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer's disease: preliminary observations. Chiu C; Miller MC; Monahan R; Osgood DP; Stopa EG; Silverberg GD Neurobiol Aging; 2015 Sep; 36(9):2475-82. PubMed ID: 26159621 [TBL] [Abstract][Full Text] [Related]
18. Amyloid-β and cognition in aging and Alzheimer's disease: molecular and neurophysiological mechanisms. Hampel H J Alzheimers Dis; 2013; 33 Suppl 1():S79-86. PubMed ID: 22531423 [TBL] [Abstract][Full Text] [Related]
19. Neuroprotective Effect of SLM, a Novel Carbazole-Based Fluorophore, on SH-SY5Y Cell Model and 3xTg-AD Mouse Model of Alzheimer's Disease. Wu X; Kosaraju J; Zhou W; Tam KY ACS Chem Neurosci; 2017 Mar; 8(3):676-685. PubMed ID: 28032988 [TBL] [Abstract][Full Text] [Related]
20. [Deposition and clearance of β-amyloid in the brain]. Wakabayashi K; Miki Y Brain Nerve; 2013 Dec; 65(12):1433-44. PubMed ID: 24323930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]