These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27632993)

  • 1. Surrogate-assisted feature extraction for high-throughput phenotyping.
    Yu S; Chakrabortty A; Liao KP; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e143-e149. PubMed ID: 27632993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.
    Yu S; Liao KP; Shaw SY; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2015 Sep; 22(5):993-1000. PubMed ID: 25929596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature extraction for phenotyping from semantic and knowledge resources.
    Ning W; Chan S; Beam A; Yu M; Geva A; Liao K; Mullen M; Mandl KD; Kohane I; Cai T; Yu S
    J Biomed Inform; 2019 Mar; 91():103122. PubMed ID: 30738949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling phenotypic big data with PheNorm.
    Yu S; Ma Y; Gronsbell J; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Liao KP; Cai T
    J Am Med Inform Assoc; 2018 Jan; 25(1):54-60. PubMed ID: 29126253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weakly Semi-supervised phenotyping using Electronic Health records.
    Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C
    J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sureLDA: A multidisease automated phenotyping method for the electronic health record.
    Ahuja Y; Zhou D; He Z; Sun J; Castro VM; Gainer V; Murphy SN; Hong C; Cai T
    J Am Med Inform Assoc; 2020 Aug; 27(8):1235-1243. PubMed ID: 32548637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable relevance ranking algorithm via semantic similarity assessment improves efficiency of medical chart review.
    Cai T; He Z; Hong C; Zhang Y; Ho YL; Honerlaw J; Geva A; Ayakulangara Panickan V; King A; Gagnon DR; Gaziano M; Cho K; Liao K; Cai T
    J Biomed Inform; 2022 Aug; 132():104109. PubMed ID: 35660521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying active learning to high-throughput phenotyping algorithms for electronic health records data.
    Chen Y; Carroll RJ; Hinz ER; Shah A; Eyler AE; Denny JC; Xu H
    J Am Med Inform Assoc; 2013 Dec; 20(e2):e253-9. PubMed ID: 23851443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records.
    Zheng NS; Feng Q; Kerchberger VE; Zhao J; Edwards TL; Cox NJ; Stein CM; Roden DM; Denny JC; Wei WQ
    J Am Med Inform Assoc; 2020 Nov; 27(11):1675-1687. PubMed ID: 32974638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relational machine learning for electronic health record-driven phenotyping.
    Peissig PL; Santos Costa V; Caldwell MD; Rottscheit C; Berg RL; Mendonca EA; Page D
    J Biomed Inform; 2014 Dec; 52():260-70. PubMed ID: 25048351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput multimodal automated phenotyping (MAP) with application to PheWAS.
    Liao KP; Sun J; Cai TA; Link N; Hong C; Huang J; Huffman JE; Gronsbell J; Zhang Y; Ho YL; Castro V; Gainer V; Murphy SN; O'Donnell CJ; Gaziano JM; Cho K; Szolovits P; Kohane IS; Yu S; Cai T
    J Am Med Inform Assoc; 2019 Nov; 26(11):1255-1262. PubMed ID: 31613361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an automated phenotyping algorithm for hepatorenal syndrome.
    Koola JD; Davis SE; Al-Nimri O; Parr SK; Fabbri D; Malin BA; Ho SB; Matheny ME
    J Biomed Inform; 2018 Apr; 80():87-95. PubMed ID: 29530803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput phenotyping with temporal sequences.
    Estiri H; Strasser ZH; Murphy SN
    J Am Med Inform Assoc; 2021 Mar; 28(4):772-781. PubMed ID: 33313899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput phenotyping with electronic medical record data using a common semi-supervised approach (PheCAP).
    Zhang Y; Cai T; Yu S; Cho K; Hong C; Sun J; Huang J; Ho YL; Ananthakrishnan AN; Xia Z; Shaw SY; Gainer V; Castro V; Link N; Honerlaw J; Huang S; Gagnon D; Karlson EW; Plenge RM; Szolovits P; Savova G; Churchill S; O'Donnell C; Murphy SN; Gaziano JM; Kohane I; Cai T; Liao KP
    Nat Protoc; 2019 Dec; 14(12):3426-3444. PubMed ID: 31748751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals.
    Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC
    J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven automated classification algorithms for acute health conditions: applying PheNorm to COVID-19 disease.
    Smith JC; Williamson BD; Cronkite DJ; Park D; Whitaker JM; McLemore MF; Osmanski JT; Winter R; Ramaprasan A; Kelley A; Shea M; Wittayanukorn S; Stojanovic D; Zhao Y; Toh S; Johnson KB; Aronoff DM; Carrell DS
    J Am Med Inform Assoc; 2024 Feb; 31(3):574-582. PubMed ID: 38109888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MixEHR-Guided: A guided multi-modal topic modeling approach for large-scale automatic phenotyping using the electronic health record.
    Ahuja Y; Zou Y; Verma A; Buckeridge D; Li Y
    J Biomed Inform; 2022 Oct; 134():104190. PubMed ID: 36058522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of Clinical Text Features for Classifying Suicide Attempts.
    Buckland RS; Hogan JW; Chen ES
    AMIA Annu Symp Proc; 2020; 2020():273-282. PubMed ID: 33936399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.