These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 27633199)

  • 21. Automation reliability in unmanned aerial vehicle control: a reliance-compliance model of automation dependence in high workload.
    Dixon SR; Wickens CD
    Hum Factors; 2006; 48(3):474-86. PubMed ID: 17063963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human-automation interaction for multiple robot control: the effect of varying automation assistance and individual differences on operator performance.
    Wright JL; Chen JYC; Barnes MJ
    Ergonomics; 2018 Aug; 61(8):1033-1045. PubMed ID: 29451105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory decision aiding in supervisory control of multiple unmanned aerial vehicles.
    Donmez B; Cummings ML; Graham HD
    Hum Factors; 2009 Oct; 51(5):718-29. PubMed ID: 20196296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compact and ordered swarms of unmanned aerial vehicles in cluttered environments.
    Xiong H; Ding Y; Liu J
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37541225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of human-automation consensus in multiple unmanned vehicle scheduling.
    Cummings ML; Clare A; Hart C
    Hum Factors; 2010 Feb; 52(1):17-27. PubMed ID: 20653222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling multi-rotor UAVs swarm deployment using virtual pheromones.
    Aznar F; Pujol M; Rizo R; Rizo C
    PLoS One; 2018; 13(1):e0190692. PubMed ID: 29370203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of Cloud-Based UAV Monitoring and Management System.
    Itkin M; Kim M; Park Y
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27854267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electroencephalographic Workload Indicators During Teleoperation of an Unmanned Aerial Vehicle Shepherding a Swarm of Unmanned Ground Vehicles in Contested Environments.
    Fernandez Rojas R; Debie E; Fidock J; Barlow M; Kasmarik K; Anavatti S; Garratt M; Abbass H
    Front Neurosci; 2020; 14():40. PubMed ID: 32116498
    [No Abstract]   [Full Text] [Related]  

  • 30. A Bio-Inspired Decision-Making Method of UAV Swarm for Attack-Defense Confrontation via Multi-Agent Reinforcement Learning.
    Chi P; Wei J; Wu K; Di B; Wang Y
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Profit-Driven Adaptive Moving Targets Search with UAV Swarms.
    Li X; Chen J; Deng F; Li H
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solving the Multi-Functional Heterogeneous UAV Cooperative Mission Planning Problem Using Multi-Swarm Fruit Fly Optimization Algorithm.
    Luo R; Zheng H; Guo J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical modelling of networked human-automation performance using working memory capacity.
    Ahmed N; de Visser E; Shaw T; Mohamed-Ameen A; Campbell M; Parasuraman R
    Ergonomics; 2014; 57(3):295-318. PubMed ID: 24308716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Balancing search and target response in cooperative unmanned aerial vehicle (UAV) teams.
    Jin Y; Liao Y; Minai AA; Polycarpou MM
    IEEE Trans Syst Man Cybern B Cybern; 2006 Jun; 36(3):571-87. PubMed ID: 16761811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.
    Gonzalez LF; Montes GA; Puig E; Johnson S; Mengersen K; Gaston KJ
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26784196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation Generation for Multiple Unmanned Vehicles Using Multi-Agent Hybrid Social Cognitive Optimization Based on the Internet of Things.
    Yao Z; Wu S; Wen Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy-Aware Management in Multi-UAV Deployments: Modelling and Strategies.
    Sanchez-Aguero V; Valera F; Vidal I; Tipantuña C; Hesselbach X
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32422970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. U-Space and UTM Deployment as an Opportunity for More Complex UAV Operations Including UAV Medical Transport.
    Kotlinski M; Calkowska JK
    J Intell Robot Syst; 2022; 106(1):12. PubMed ID: 36039343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.