These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27633231)

  • 1. Distraction and task engagement: How interesting and boring information impact driving performance and subjective and physiological responses.
    Horrey WJ; Lesch MF; Garabet A; Simmons L; Maikala R
    Appl Ergon; 2017 Jan; 58():342-348. PubMed ID: 27633231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of self-regulation in the context of driver distraction: A simulator study.
    Wandtner B; Schumacher M; Schmidt EA
    Traffic Inj Prev; 2016 Jul; 17(5):472-9. PubMed ID: 27082493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Good distractions: Testing the effects of listening to an audiobook on driving performance in simple and complex road environments.
    Nowosielski RJ; Trick LM; Toxopeus R
    Accid Anal Prev; 2018 Feb; 111():202-209. PubMed ID: 29223795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driver distraction and its effects on partially automated driving performance: A driving simulator study among young-experienced drivers.
    Zangi N; Srour-Zreik R; Ridel D; Chasidim H; Borowsky A
    Accid Anal Prev; 2022 Mar; 166():106565. PubMed ID: 35032704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving.
    Zeeb K; Buchner A; Schrauf M
    Accid Anal Prev; 2016 Jul; 92():230-9. PubMed ID: 27107472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional near-infrared spectroscopy in the evaluation of urban rail transit drivers' mental workload under simulated driving conditions.
    Li LP; Liu ZG; Zhu HY; Zhu L; Huang YC
    Ergonomics; 2019 Mar; 62(3):406-419. PubMed ID: 30307379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance.
    Naujoks F; Höfling S; Purucker C; Zeeb K
    Accid Anal Prev; 2018 Dec; 121():28-42. PubMed ID: 30205284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does attention capacity moderate the effect of driver distraction in older drivers?
    Cuenen A; Jongen EM; Brijs T; Brijs K; Lutin M; Van Vlierden K; Wets G
    Accid Anal Prev; 2015 Apr; 77():12-20. PubMed ID: 25667202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the demands of destination entry using Google Glass and the Samsung Galaxy S4 during simulated driving.
    Beckers N; Schreiner S; Bertrand P; Mehler B; Reimer B
    Appl Ergon; 2017 Jan; 58():25-34. PubMed ID: 27633195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of distraction mitigation strategies on driving performance.
    Donmez B; Boyle LN; Lee JD
    Hum Factors; 2006; 48(4):785-804. PubMed ID: 17240725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Commercial Truck Driver Health and Safety: Exploring Distracted Driving Performance and Self-Reported Driving Skill.
    Stavrinos D; Heaton K; Welburn SC; McManus B; Griffin R; Fine PR
    Workplace Health Saf; 2016 Aug; 64(8):369-76. PubMed ID: 26809775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reading text while driving: understanding drivers' strategic and tactical adaptation to distraction.
    Liang Y; Horrey WJ; Hoffman JD
    Hum Factors; 2015 Mar; 57(2):347-59. PubMed ID: 25850162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study.
    Sonnleitner A; Treder MS; Simon M; Willmann S; Ewald A; Buchner A; Schrauf M
    Accid Anal Prev; 2014 Jan; 62():110-8. PubMed ID: 24144496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating driver distraction with retrospective and concurrent feedback.
    Donmez B; Boyle LN; Lee JD
    Accid Anal Prev; 2008 Mar; 40(2):776-86. PubMed ID: 18329433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation between driving performance and drivers' subjective estimates of performance and workload in dual-task conditions.
    Horrey WJ; Lesch MF; Garabet A
    J Safety Res; 2009; 40(1):7-12. PubMed ID: 19285580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulator study of the effects of singing on driving performance.
    Hughes GM; Rudin-Brown CM; Young KL
    Accid Anal Prev; 2013 Jan; 50():787-92. PubMed ID: 22854633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In the eye of the beholder: A simulator study of the impact of Google Glass on driving performance.
    Young KL; Stephens AN; Stephan KL; Stuart GW
    Accid Anal Prev; 2016 Jan; 86():68-75. PubMed ID: 26519889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of cognitively demanding dual-task driving condition on elderly people's driving performance; Real driving monitoring.
    Ebnali M; Ahmadnezhad P; Shateri A; Mazloumi A; Ebnali Heidari M; Nazeri AR
    Accid Anal Prev; 2016 Sep; 94():198-206. PubMed ID: 27328019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying cognitive distraction using steering wheel reversal rates.
    Kountouriotis GK; Spyridakos P; Carsten OMJ; Merat N
    Accid Anal Prev; 2016 Nov; 96():39-45. PubMed ID: 27497055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of using a portable music player on simulated driving performance and task-sharing strategies.
    Young KL; Mitsopoulos-Rubens E; Rudin-Brown CM; Lenné MG
    Appl Ergon; 2012 Jul; 43(4):738-46. PubMed ID: 22118952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.