BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27633240)

  • 21. Geographical Cues and Developmental Exposure: Navigational Style, Wayfinding Anxiety, and Childhood Experience in the Faroe Islands.
    Schug MG
    Hum Nat; 2016 Mar; 27(1):68-81. PubMed ID: 26577342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Navigation aid for blind persons by visual-to-auditory sensory substitution: A pilot study.
    Neugebauer A; Rifai K; Getzlaff M; Wahl S
    PLoS One; 2020; 15(8):e0237344. PubMed ID: 32818953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vibrotactile Guidance for Wayfinding of Blind Walkers.
    Flores G; Kurniawan S; Manduchi R; Martinson E; Morales LM; Sisbot EA
    IEEE Trans Haptics; 2015; 8(3):306-17. PubMed ID: 25781953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exceptional ability of blind humans to hear sound motion: implications for the emergence of auditory space.
    Lewald J
    Neuropsychologia; 2013 Jan; 51(1):181-6. PubMed ID: 23178211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Route complexity and simulated physical ageing negatively influence wayfinding.
    Zijlstra E; Hagedoorn M; Krijnen WP; van der Schans CP; Mobach MP
    Appl Ergon; 2016 Sep; 56():62-7. PubMed ID: 27184311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind.
    Kim DS; Emerson RW; Naghshineh K; Pliskow J; Myers K
    J Rehabil Res Dev; 2012; 49(3):381-93. PubMed ID: 22773198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The link between blindness onset and audiospatial processing: testing audiomotor cues in acoustic virtual reality.
    Esposito D; Bollini A; Gori M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5880-5884. PubMed ID: 34892457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An indoor navigation system to support the visually impaired.
    Riehle TH; Lichter P; Giudice NA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4435-8. PubMed ID: 19163698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Older Adult Strategies for Community Wayfinding.
    Marquez DX; Hunter RH; Griffith MH; Bryant LL; Janicek SJ; Atherly AJ
    J Appl Gerontol; 2017 Feb; 36(2):213-233. PubMed ID: 25873453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of three orientation and mobility aids for individuals with blindness: Verbal description, audio-tactile map and audio-haptic map.
    Papadopoulos K; Koustriava E; Koukourikos P; Kartasidou L; Barouti M; Varveris A; Misiou M; Zacharogeorga T; Anastasiadis T
    Assist Technol; 2017; 29(1):1-7. PubMed ID: 27184731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The extent of visual deficit and auditory spatial compensation: evidence from self-positioning from auditory cues.
    Després O; Candas V; Dufour A
    Brain Res Cogn Brain Res; 2005 May; 23(2-3):444-7. PubMed ID: 15820651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pre-Navigation via Interactive Audio Tactile Maps to Promote the Wellbeing of Visually Impaired People.
    Scase M; Griffin E; Picinali L
    Stud Health Technol Inform; 2019; 260():170-177. PubMed ID: 31118334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The "EyeCane", a new electronic travel aid for the blind: Technology, behavior & swift learning.
    Maidenbaum S; Hanassy S; Abboud S; Buchs G; Chebat DR; Levy-Tzedek S; Amedi A
    Restor Neurol Neurosci; 2014; 32(6):813-24. PubMed ID: 25201814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and nonspatial peripheral auditory processing in congenitally blind people.
    Chen Q; Zhang M; Zhou X
    Neuroreport; 2006 Sep; 17(13):1449-52. PubMed ID: 16932156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People.
    Martinez-Sala AS; Losilla F; Sánchez-Aarnoutse JC; García-Haro J
    Sensors (Basel); 2015 Dec; 15(12):32168-87. PubMed ID: 26703610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the lateral position of a virtual object based on echoes by humans.
    Rowan D; Papadopoulos T; Edwards D; Holmes H; Hollingdale A; Evans L; Allen R
    Hear Res; 2013 Jun; 300():56-65. PubMed ID: 23538130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a visual information to auditory information transformation system for ambulation assistance.
    Kim JH; Park JE; Ji IH; Won CH; Lee JM; Jo JH; Park YJ; Nah JW
    Technol Health Care; 2019; 27(S1):165-173. PubMed ID: 31045536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Creating a Supportive Environment Using Cues for Wayfinding in Dementia.
    Davis R; Weisbeck C
    J Gerontol Nurs; 2016 Mar; 42(3):36-44. PubMed ID: 26934972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cognitive and Affective Assessment of Navigation and Mobility Tasks for the Visually Impaired via Electroencephalography and Behavioral Signals.
    Lupu RG; Mitruț O; Stan A; Ungureanu F; Kalimeri K; Moldoveanu A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosonar navigation above water II: exploiting mirror images.
    Genzel D; Hoffmann S; Prosch S; Firzlaff U; Wiegrebe L
    J Neurophysiol; 2015 Feb; 113(4):1146-55. PubMed ID: 25411457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.