These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 27633277)
81. In silico modeling of in situ fluidized bed melt granulation. Aleksić I; Duriš J; Ilić I; Ibrić S; Parojčić J; Srčič S Int J Pharm; 2014 May; 466(1-2):21-30. PubMed ID: 24607215 [TBL] [Abstract][Full Text] [Related]
82. Comparison of scale-up strategies in twin-screw wet granulation. Franke M; Riedel T; Meier R; Schmidt C; Kleinebudde P Int J Pharm; 2023 Jun; 641():123052. PubMed ID: 37196882 [TBL] [Abstract][Full Text] [Related]
83. Controlling granule size through breakage in a novel reverse-phase wet granulation process: the effect of impeller speed and binder liquid viscosity. Wade JB; Martin GP; Long DF Int J Pharm; 2015 Jan; 478(2):439-46. PubMed ID: 25475017 [TBL] [Abstract][Full Text] [Related]
84. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process. Wade JB; Martin GP; Long DF Int J Pharm; 2015 Jul; 488(1-2):95-101. PubMed ID: 25888799 [TBL] [Abstract][Full Text] [Related]
85. Optimization of critical quality attributes in continuous twin-screw wet granulation via design space validated with pilot scale experimental data. Liu H; Galbraith SC; Ricart B; Stanton C; Smith-Goettler B; Verdi L; O'Connor T; Lee S; Yoon S Int J Pharm; 2017 Jun; 525(1):249-263. PubMed ID: 28450171 [TBL] [Abstract][Full Text] [Related]
86. Parametric Study of Residence Time Distributions and Granulation Kinetics as a Basis for Process Modeling of Twin-Screw Wet Granulation. Plath T; Korte C; Sivanesapillai R; Weinhart T Pharmaceutics; 2021 May; 13(5):. PubMed ID: 34062801 [TBL] [Abstract][Full Text] [Related]
87. Continuous twin screw granulation: Influence of process and formulation variables on granule quality attributes of model formulations. Portier C; Pandelaere K; Delaet U; Vigh T; Kumar A; Di Pretoro G; De Beer T; Vervaet C; Vanhoorne V Int J Pharm; 2020 Feb; 576():118981. PubMed ID: 31935472 [TBL] [Abstract][Full Text] [Related]
88. Investigating the Use of Polymeric Binders in Twin Screw Melt Granulation Process for Improving Compactibility of Drugs. Batra A; Desai D; Serajuddin ATM J Pharm Sci; 2017 Jan; 106(1):140-150. PubMed ID: 27578544 [TBL] [Abstract][Full Text] [Related]
89. Heat Transfer Evaluation During Twin-Screw Wet Granulation in View of Detailed Process Understanding. Stauffer F; Ryckaert A; Van Hauwermeiren D; Funke A; Djuric D; Nopens I; De Beer T AAPS PharmSciTech; 2019 Aug; 20(7):291. PubMed ID: 31428889 [TBL] [Abstract][Full Text] [Related]
90. Influence of raw material properties upon critical quality attributes of continuously produced granules and tablets. Fonteyne M; Wickström H; Peeters E; Vercruysse J; Ehlers H; Peters BH; Remon JP; Vervaet C; Ketolainen J; Sandler N; Rantanen J; Naelapää K; De Beer T Eur J Pharm Biopharm; 2014 Jul; 87(2):252-63. PubMed ID: 24589422 [TBL] [Abstract][Full Text] [Related]
91. Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for a continuous granulation-drying-milling process. Kumar V; Taylor MK; Mehrotra A; Stagner WC AAPS PharmSciTech; 2013 Jun; 14(2):523-30. PubMed ID: 23435807 [TBL] [Abstract][Full Text] [Related]
92. Continuous twin screw granulation of controlled release formulations with various HPMC grades. Vanhoorne V; Janssens L; Vercruysse J; De Beer T; Remon JP; Vervaet C Int J Pharm; 2016 Sep; 511(2):1048-57. PubMed ID: 27521702 [TBL] [Abstract][Full Text] [Related]
93. Simplified end-to-end continuous manufacturing by feeding API suspensions in twin-screw wet granulation. Schmidt A; de Waard H; Moll KP; Kleinebudde P; Krumme M Eur J Pharm Biopharm; 2018 Dec; 133():224-231. PubMed ID: 30291963 [TBL] [Abstract][Full Text] [Related]
94. Scale-up and endpoint issues of pharmaceutical wet granulation in a V-type low shear granulator. Chirkot T Drug Dev Ind Pharm; 2002 Aug; 28(7):871-88. PubMed ID: 12236073 [TBL] [Abstract][Full Text] [Related]
95. Application of Twin-Screw Melt Granulation to Overcome the Poor Tabletability of a High Dose Drug. Thakore SD; Reddy KV; Dantuluri AK; Patel D; Kumawat A; Sihorkar V; Ghoroi C; Bansal AK Pharm Res; 2022 Dec; 39(12):3241-3257. PubMed ID: 36002616 [TBL] [Abstract][Full Text] [Related]
96. Twin screw granulation - review of current progress. Thompson MR Drug Dev Ind Pharm; 2015; 41(8):1223-31. PubMed ID: 25402966 [TBL] [Abstract][Full Text] [Related]
97. Twin Screw Granulation: Effects of Properties of Primary Powders. Lute SV; Dhenge RM; Salman AD Pharmaceutics; 2018 Jun; 10(2):. PubMed ID: 29865249 [TBL] [Abstract][Full Text] [Related]
98. A novel methodology to study polymodal particle size distributions produced during continuous wet granulation. Mendez Torrecillas C; Halbert GW; Lamprou DA Int J Pharm; 2017 Mar; 519(1-2):230-239. PubMed ID: 28104406 [TBL] [Abstract][Full Text] [Related]
99. Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. Harting J; Kleinebudde P Eur J Pharm Biopharm; 2018 Apr; 125():169-181. PubMed ID: 29408520 [TBL] [Abstract][Full Text] [Related]
100. The effect of the physical state of binders on high-shear wet granulation and granule properties: a mechanistic approach to understand the high-shear wet granulation process. part IV. the impact of rheological state and tip-speeds. Li J; Tao L; Buckley D; Tao J; Gao J; Hubert M J Pharm Sci; 2013 Dec; 102(12):4384-94. PubMed ID: 24135976 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]