These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27633284)

  • 1. Visualizing the Vibration of Laryngeal Tissue during Phonation Using Ultrafast Plane Wave Ultrasonography.
    Jing B; Tang S; Wu L; Wang S; Wan M
    Ultrasound Med Biol; 2016 Dec; 42(12):2812-2825. PubMed ID: 27633284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography.
    Jing B; Ge Z; Wu L; Wang S; Wan M
    J Acoust Soc Am; 2018 May; 143(5):EL425. PubMed ID: 29857726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic B-mode ultrasound imaging of vocal fold vibration during phonation.
    Tsai CG; Chen JH; Shau YW; Hsiao TY
    Ultrasound Med Biol; 2009 Nov; 35(11):1812-8. PubMed ID: 19716224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [High speed cinematographic analysis of subglottal mucosal vibration during experimentally induced phonation in excised larynges].
    Kurokawa H
    Nihon Jibiinkoka Gakkai Kaiho; 1992 Aug; 95(8):1151-63. PubMed ID: 1403309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of ultrasound laryngography and its phonetic significance].
    Hino T
    Nihon Jibiinkoka Gakkai Kaiho; 1989 Jun; 92(6):837-50. PubMed ID: 2681617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph.
    Tang S; Zhang Y; Qin X; Wang S; Wan M
    J Acoust Soc Am; 2013 Jul; 134(1):528-38. PubMed ID: 23862828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vocal fold vibration viewed from the tracheal side in living human beings.
    Yumoto E; Kadota Y; Mori T
    Otolaryngol Head Neck Surg; 1996 Oct; 115(4):329-34. PubMed ID: 8861887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laryngeal mechanisms during human 4-kHz vocalization studied with CT, videostroboscopy, and color Doppler imaging.
    Tsai CG; Shau YW; Liu HM; Hsiao TY
    J Voice; 2008 May; 22(3):275-82. PubMed ID: 17509826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vocal fold epithelium removal on vibration in an excised human larynx model.
    Tse JR; Zhang Z; Long JL
    J Acoust Soc Am; 2015 Jul; 138(1):EL60-4. PubMed ID: 26233062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model.
    Slavit DH; McCaffrey TV; Yanagi E
    Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Videolaryngostroboscopy following vertical partial laryngectomy.
    Mandell DL; Woo P; Behin DS; Mojica J; Minasian A; Urken ML; Biller HF
    Ann Otol Rhinol Laryngol; 1999 Nov; 108(11 Pt 1):1061-7. PubMed ID: 10579233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Quantification of Vocal Fold Vibration After Exposure to Superficial Laryngeal Dehydration: A Preliminary Study.
    Patel RR; Walker R; Sivasankar PM
    J Voice; 2016 Jul; 30(4):427-33. PubMed ID: 26277075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Laser measuring device for phonation].
    Schade G; Kirchhoff T; Hess M
    Folia Phoniatr Logop; 2005; 57(4):202-15. PubMed ID: 16037696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronizing videostroboscopic images of human laryngeal vibration with physiological signals.
    Sercarz JA; Berke GS; Gerratt BR; Kreiman J; Ming Y; Natividad M
    Am J Otolaryngol; 1992; 13(1):40-4. PubMed ID: 1585984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Vocal Fold Vibration in Various Laryngeal Disorders Using High-Speed Digital Imaging.
    Yamauchi A; Yokonishi H; Imagawa H; Sakakibara K; Nito T; Tayama N; Yamasoba T
    J Voice; 2016 Mar; 30(2):205-14. PubMed ID: 26003886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.