These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27633315)

  • 41. A Low-Energy-Gap Thienochrysenocarbazole Dye for Highly Efficient Mesoscopic Titania Solar Cells: Understanding the Excited State and Charge Carrier Dynamics.
    Wang J; Xie X; Weng G; Yuan Y; Zhang J; Wang P
    ChemSusChem; 2018 May; 11(9):1460-1466. PubMed ID: 29570953
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of the Terminal Electron Donor in D-D-π-A Organic Dye-Sensitized Solar Cells: Dithieno[3,2-b:2',3'-d]pyrrole versus Bis(amine).
    Dai P; Yang L; Liang M; Dong H; Wang P; Zhang C; Sun Z; Xue S
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22436-47. PubMed ID: 26394089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells.
    Amoli V; Bhat S; Maurya A; Banerjee B; Bhaumik A; Sinha AK
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26022-35. PubMed ID: 26574644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of local Stark effect observed for a complete D149 dye-sensitized solar cell.
    Burdziński G; Karolczak J; Ziółek M
    Phys Chem Chem Phys; 2013 Mar; 15(11):3889-96. PubMed ID: 23400026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microscopic observation of dye molecules for solar cells on a titania surface.
    Koshiya S; Yamashita S; Kimoto K
    Sci Rep; 2016 Apr; 6():24616. PubMed ID: 27087005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.
    Marinado T; Hagberg DP; Hedlund M; Edvinsson T; Johansson EM; Boschloo G; Rensmo H; Brinck T; Sun L; Hagfeldt A
    Phys Chem Chem Phys; 2009 Jan; 11(1):133-41. PubMed ID: 19081916
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Charge collection and pore filling in solid-state dye-sensitized solar cells.
    Snaith HJ; Humphry-Baker R; Chen P; Cesar I; Zakeeruddin SM; Grätzel M
    Nanotechnology; 2008 Oct; 19(42):424003. PubMed ID: 21832663
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparing electron recombination via interfacial modifications in dye-sensitized solar cells.
    Li L; Chen S; Xu C; Zhao Y; Rudawski NG; Ziegler KJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20978-84. PubMed ID: 25412271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bifurcation of Regeneration and Recombination in Dye-Sensitized Solar Cells via Electronic Manipulation of Tandem Cobalt Redox Shuttles.
    Baillargeon J; Xie Y; Hamann TW
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33544-33548. PubMed ID: 28340299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell.
    Kakiage K; Aoyama Y; Yano T; Otsuka T; Kyomen T; Unno M; Hanaya M
    Chem Commun (Camb); 2014 Jun; 50(48):6379-81. PubMed ID: 24801395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of Electronic Relaxation in the Injection Process of Organic Push-Pull Dyes in Complete Dye-Sensitized Solar Cells.
    Maffeis V; Dogan H; Cassette E; Jousselme B; Gustavsson T
    J Phys Chem Lett; 2019 Sep; 10(17):5076-5081. PubMed ID: 31409074
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.
    Li SR; Lee CP; Yang PF; Liao CW; Lee MM; Su WL; Li CT; Lin HW; Ho KC; Sun SS
    Chemistry; 2014 Aug; 20(32):10052-64. PubMed ID: 25042065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.
    Prasad RM; Pathan HM
    Nanotechnology; 2016 Apr; 27(14):145402. PubMed ID: 26916535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular scale characterization of the titania-dye-solvent interface in dye-sensitized solar cells.
    Marquet P; Andersson G; Snedden A; Kloo L; Atkin R
    Langmuir; 2010 Jun; 26(12):9612-6. PubMed ID: 20297833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells.
    Manthou VS; Pefkianakis EK; Falaras P; Vougioukalakis GC
    ChemSusChem; 2015 Feb; 8(4):588-99. PubMed ID: 25650987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile and selective synthesis of oligothiophene-based sensitizer isomers: an approach toward efficient dye-sensitized solar cells.
    Feng Q; Zhang Q; Lu X; Wang H; Zhou G; Wang ZS
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8982-90. PubMed ID: 23981089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.