These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27633501)

  • 1. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization.
    Kim TS; Patel SK; Selvaraj C; Jung WS; Pan CH; Kang YC; Lee JK
    Sci Rep; 2016 Sep; 6():33438. PubMed ID: 27633501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming NADPH product inhibition improves D-sorbitol conversion to L-sorbose.
    Kim TS; Gao H; Li J; Kalia VC; Muthusamy K; Sohng JK; Kim IW; Lee JK
    Sci Rep; 2019 Jan; 9(1):815. PubMed ID: 30692560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose.
    Yang XP; Wei LJ; Lin JP; Yin B; Wei DZ
    Appl Environ Microbiol; 2008 Aug; 74(16):5250-3. PubMed ID: 18502922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003.
    Xu S; Wang X; Du G; Zhou J; Chen J
    Microb Cell Fact; 2014 Oct; 13():146. PubMed ID: 25323199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic improvement of PQQ-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans for the biosynthesis of miglitol precursor 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose.
    Ke X; Pan-Hong Y; Hu ZC; Chen L; Sun XQ; Zheng YG
    J Biotechnol; 2019 Jul; 300():55-62. PubMed ID: 31100333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans.
    De Wulf P; Soetaert W; Vandamme EJ
    Biotechnol Bioeng; 2000 Aug; 69(3):339-43. PubMed ID: 10861414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis.
    Hu Y; Wan H; Li J; Zhou J
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1039-47. PubMed ID: 25952118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production.
    Parmentier S; Beauprez J; Arnaut F; Soetaert W; Vandamme EJ
    Biotechnol Lett; 2005 Mar; 27(5):305-11. PubMed ID: 15834790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism.
    Yang XP; Wei LJ; Ye JB; Yin B; Wei DZ
    Arch Biochem Biophys; 2008 Sep; 477(2):206-10. PubMed ID: 18407824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning of a gene for D-sorbitol dehydrogenase from Gluconobacter oxydans G624 and expression of the gene in Pseudomonas putida IFO3738.
    Shibata T; Ichikawa C; Matsuura M; Takata Y; Noguchi Y; Saito Y; Yamashita M
    J Biosci Bioeng; 2000; 89(5):463-8. PubMed ID: 16232778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation.
    Liu D; Ke X; Hu ZC; Zheng YG
    Enzyme Microb Technol; 2020 Nov; 141():109670. PubMed ID: 33051020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255--enzymatic and genetic characterization.
    Hoshino T; Sugisawa T; Shinjoh M; Tomiyama N; Miyazaki T
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):278-88. PubMed ID: 12686146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.
    Parmentier S; Arnaut F; Soetaert W; Vandamme EJ
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand.
    Toyama H; Soemphol W; Moonmangmee D; Adachi O; Matsushita K
    Biosci Biotechnol Biochem; 2005 Jun; 69(6):1120-9. PubMed ID: 15973043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255.
    Sugisawa T; Hoshino T
    Biosci Biotechnol Biochem; 2002 Jan; 66(1):57-64. PubMed ID: 11866120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of pyrroloquinoline quinone-dependent d-sorbitol dehydrogenase activity from Gluconobacter oxydans via expression of Vitreoscilla hemoglobin and regulation of dissolved oxygen tension for the biosynthesis of 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose.
    Liu D; Ke X; Hu ZC; Zheng YG
    J Biosci Bioeng; 2021 May; 131(5):518-524. PubMed ID: 33487552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of NAD(P)-independent polyol dehydrogenase complex from the plasma membrane of Gluconobacter oxydans.
    VanLare IJ; Claus GW
    Can J Microbiol; 2007 Apr; 53(4):504-8. PubMed ID: 17612605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain.
    Saito Y; Ishii Y; Hayashi H; Imao Y; Akashi T; Yoshikawa K; Noguchi Y; Soeda S; Yoshida M; Niwa M; Hosoda J; Shimomura K
    Appl Environ Microbiol; 1997 Feb; 63(2):454-60. PubMed ID: 9023923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model system for increasing the intensity of whole-cell biocatalysis: investigation of the rate of oxidation of D-sorbitol to L-sorbose by thin bi-layer latex coatings of non-growing Gluconobacter oxydans.
    Fidaleo M; Charaniya S; Solheid C; Diel U; Laudon M; Ge H; Scriven LE; Flickinger MC
    Biotechnol Bioeng; 2006 Oct; 95(3):446-58. PubMed ID: 16804947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound D-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity.
    Shinjoh M; Tomiyama N; Miyazaki T; Hoshino T
    Biosci Biotechnol Biochem; 2002 Nov; 66(11):2314-22. PubMed ID: 12506966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.