BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27633889)

  • 61. A novel method for enhancement of peptide vaccination utilizing T-cell epitopes from conventional vaccines.
    Yano A; Miwa Y; Kanazawa Y; Ito K; Makino M; Imai S; Hanada N; Nisizawa T
    Vaccine; 2013 Mar; 31(11):1510-5. PubMed ID: 23318151
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Design of a potential Sema4A-based multi-epitope vaccine to combat triple-negative breast cancer: an immunoinformatic approach.
    Paranthaman P; Veerappapillai S
    Med Oncol; 2023 Feb; 40(3):105. PubMed ID: 36823384
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases.
    Shey RA; Ghogomu SM; Esoh KK; Nebangwa ND; Shintouo CM; Nongley NF; Asa BF; Ngale FN; Vanhamme L; Souopgui J
    Sci Rep; 2019 Mar; 9(1):4409. PubMed ID: 30867498
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phase I active immunotherapy with combination of two chimeric, human epidermal growth factor receptor 2, B-cell epitopes fused to a promiscuous T-cell epitope in patients with metastatic and/or recurrent solid tumors.
    Kaumaya PT; Foy KC; Garrett J; Rawale SV; Vicari D; Thurmond JM; Lamb T; Mani A; Kane Y; Balint CR; Chalupa D; Otterson GA; Shapiro CL; Fowler JM; Grever MR; Bekaii-Saab TS; Carson WE
    J Clin Oncol; 2009 Nov; 27(31):5270-7. PubMed ID: 19752336
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach.
    Rana A; Akhter Y
    Immunobiology; 2016 Apr; 221(4):544-57. PubMed ID: 26707618
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Designing B-Cell Epitopes for Immunotherapy and Subunit Vaccines.
    Singh H; Gupta S; Gautam A; Raghava GP
    Methods Mol Biol; 2015; 1348():327-40. PubMed ID: 26424284
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MUC1-derived glycopeptide libraries with improved MHC anchors are strong antigens and prime mouse T cells for proliferative responses to lysates of human breast cancer tissue.
    Gad M; Jensen T; Gagne R; Komba S; Daugaard S; Kroman N; Meldal M; Werdelin O
    Eur J Immunol; 2003 Jun; 33(6):1624-32. PubMed ID: 12778480
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Peptide vaccines and peptide libraries.
    Wiesmüller KH; Fleckenstein B; Jung G
    Biol Chem; 2001 Apr; 382(4):571-9. PubMed ID: 11405221
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Immunoinformatics approaches for designing a novel multi epitope peptide vaccine against human norovirus (Norwalk virus).
    Azim KF; Hasan M; Hossain MN; Somana SR; Hoque SF; Bappy MNI; Chowdhury AT; Lasker T
    Infect Genet Evol; 2019 Oct; 74():103936. PubMed ID: 31233780
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Immuno-informatics based approaches to design a novel multi epitope-based vaccine for immune response reinforcement against Leptospirosis.
    Validi M; Karkhah A; Prajapati VK; Nouri HR
    Mol Immunol; 2018 Dec; 104():128-138. PubMed ID: 30448609
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection.
    Soares MM; Mehta V; Finn OJ
    J Immunol; 2001 Jun; 166(11):6555-63. PubMed ID: 11359807
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Engineering a novel immunogenic chimera protein utilizing bacterial infections associated with atherosclerosis to induce a deviation in adaptive immune responses via Immunoinformatics approaches.
    Saleki K; Alijanizade P; Moradi S; Rahmani A; Banazadeh M; Mohamadi MH; Shahabi F; Nouri HR
    Infect Genet Evol; 2022 Aug; 102():105290. PubMed ID: 35568333
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bioinformatics design of a peptide vaccine containing sarcoma antigen NY-SAR-35 epitopes against breast cancer and evaluation of its immunological function in BALB/c mouse model.
    Samman N; Mohabatkar H; Behbahani M; Ganjlikhani Hakemi M
    PLoS One; 2024; 19(6):e0306117. PubMed ID: 38923980
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach.
    Mehla K; Ramana J
    Mol Biosyst; 2016 Mar; 12(3):890-901. PubMed ID: 26766131
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Design and production of a multiepitope construct derived from hepatitis E virus capsid protein.
    Taherkhani R; Farshadpour F; Makvandi M
    J Med Virol; 2015 Jul; 87(7):1225-34. PubMed ID: 25784455
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach.
    Chauhan V; Rungta T; Goyal K; Singh MP
    Sci Rep; 2019 Feb; 9(1):2517. PubMed ID: 30792446
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Peptide vaccines in breast cancer: The immunological basis for clinical response.
    Peres Lde P; da Luz FA; Pultz Bdos A; Brígido PC; de Araújo RA; Goulart LR; Silva MJ
    Biotechnol Adv; 2015 Dec; 33(8):1868-77. PubMed ID: 26523780
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Recognition of prostate and breast tumor cells by helper T lymphocytes specific for a prostate and breast tumor-associated antigen, TARP.
    Kobayashi H; Nagato T; Oikawa K; Sato K; Kimura S; Aoki N; Omiya R; Tateno M; Celis E
    Clin Cancer Res; 2005 May; 11(10):3869-78. PubMed ID: 15897588
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes.
    Melief CJ; Van Der Burg SH; Toes RE; Ossendorp F; Offringa R
    Immunol Rev; 2002 Oct; 188():177-82. PubMed ID: 12445291
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Human CD8 and CD4 T cell epitopes of epithelial cancer antigens.
    Sato N; Nabeta Y; Kondo H; Sahara H; Hirohashi Y; Kashiwagi K; Kanaseki T; Sato Y; Rong S; Hirai I; Kamiguchi K; Tamura Y; Matsuura A; Takahashi S; Torigoe T; Ikeda H
    Cancer Chemother Pharmacol; 2000; 46 Suppl():S86-90. PubMed ID: 10950155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.