BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27633928)

  • 1. Linear viscoelasticity of complex coacervates.
    Liu Y; Winter HH; Perry SL
    Adv Colloid Interface Sci; 2017 Jan; 239():46-60. PubMed ID: 27633928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex coacervation of poly(ethylene-imine)/polypeptide aqueous solutions: thermodynamic and rheological characterization.
    Priftis D; Megley K; Laugel N; Tirrell M
    J Colloid Interface Sci; 2013 May; 398():39-50. PubMed ID: 23518303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial properties of polymeric complex coacervates from simulation and theory.
    Lytle TK; Salazar AJ; Sing CE
    J Chem Phys; 2018 Oct; 149(16):163315. PubMed ID: 30384702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous self-assembly of arginine and K
    Liu X; Xie X; Du Z; Li B; Wu L; Li W
    Soft Matter; 2019 Dec; 15(45):9178-9186. PubMed ID: 31584062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex coacervation of supercharged proteins with polyelectrolytes.
    Obermeyer AC; Mills CE; Dong XH; Flores RJ; Olsen BD
    Soft Matter; 2016 Apr; 12(15):3570-81. PubMed ID: 26965053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-phase interactions and interfacial transport phenomena in coacervate/oil/water systems.
    Dardelle G; Erni P
    Adv Colloid Interface Sci; 2014 Apr; 206():79-91. PubMed ID: 24268195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervates.
    Es Sayed J; Caïto C; Arunachalam A; Amirsadeghi A; van Westerveld L; Maret D; Mohamed Yunus RA; Calicchia E; Dittberner O; Portale G; Parisi D; Kamperman M
    Macromolecules; 2023 Aug; 56(15):5891-5904. PubMed ID: 37576476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the phase behavior of coacervate-driven self-assembly in diblock copolyelectrolytes.
    Ong GMC; Sing CE
    Soft Matter; 2019 Jun; 15(25):5116-5127. PubMed ID: 31188388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-healing fish gelatin/sodium montmorillonite biohybrid coacervates: structural and rheological characterization.
    Qazvini NT; Bolisetty S; Adamcik J; Mezzenga R
    Biomacromolecules; 2012 Jul; 13(7):2136-47. PubMed ID: 22642874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of fish gelatin-gum arabic complex coacervates as influenced by phase separation temperature.
    Anvari M; Pan CH; Yoon WB; Chung D
    Int J Biol Macromol; 2015 Aug; 79():894-902. PubMed ID: 26054661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological and Microstructural Characteristics of Canola Protein Isolate-Chitosan Complex Coacervates.
    Chang PG; Gupta R; Timilsena YP
    J Food Sci; 2019 May; 84(5):1104-1112. PubMed ID: 30994940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition and structure of whey protein/gum arabic coacervates.
    Weinbreck F; Tromp RH; de Kruif CG
    Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the modern theory of polymeric complex coacervation.
    Sing CE
    Adv Colloid Interface Sci; 2017 Jan; 239():2-16. PubMed ID: 27161661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of bovine β-lactoglobulin-lactoferrin coacervates.
    Kizilay E; Seeman D; Yan Y; Du X; Dubin PL; Donato-Capel L; Bovetto L; Schmitt C
    Soft Matter; 2014 Oct; 10(37):7262-8. PubMed ID: 25099892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic strength and hydrogen bonding effects on whey protein isolate-flaxseed gum coacervate rheology.
    Liu J; Shim YY; Reaney MJT
    Food Sci Nutr; 2020 Apr; 8(4):2102-2111. PubMed ID: 32328277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in the science of complex coacervation.
    Sing CE; Perry SL
    Soft Matter; 2020 Mar; 16(12):2885-2914. PubMed ID: 32134099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.
    Boral S; Bohidar HB
    J Phys Chem B; 2010 Sep; 114(37):12027-35. PubMed ID: 20809576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Strength Dependence of the Complex Coacervation between Lactoferrin and β-Lactoglobulin.
    Soussi Hachfi R; Hamon P; Rousseau F; Famelart MH; Bouhallab S
    Foods; 2023 Mar; 12(5):. PubMed ID: 36900563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.