These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27633928)

  • 1. Linear viscoelasticity of complex coacervates.
    Liu Y; Winter HH; Perry SL
    Adv Colloid Interface Sci; 2017 Jan; 239():46-60. PubMed ID: 27633928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex coacervation of poly(ethylene-imine)/polypeptide aqueous solutions: thermodynamic and rheological characterization.
    Priftis D; Megley K; Laugel N; Tirrell M
    J Colloid Interface Sci; 2013 May; 398():39-50. PubMed ID: 23518303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial properties of polymeric complex coacervates from simulation and theory.
    Lytle TK; Salazar AJ; Sing CE
    J Chem Phys; 2018 Oct; 149(16):163315. PubMed ID: 30384702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous self-assembly of arginine and K
    Liu X; Xie X; Du Z; Li B; Wu L; Li W
    Soft Matter; 2019 Dec; 15(45):9178-9186. PubMed ID: 31584062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex coacervation of supercharged proteins with polyelectrolytes.
    Obermeyer AC; Mills CE; Dong XH; Flores RJ; Olsen BD
    Soft Matter; 2016 Apr; 12(15):3570-81. PubMed ID: 26965053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-phase interactions and interfacial transport phenomena in coacervate/oil/water systems.
    Dardelle G; Erni P
    Adv Colloid Interface Sci; 2014 Apr; 206():79-91. PubMed ID: 24268195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervates.
    Es Sayed J; Caïto C; Arunachalam A; Amirsadeghi A; van Westerveld L; Maret D; Mohamed Yunus RA; Calicchia E; Dittberner O; Portale G; Parisi D; Kamperman M
    Macromolecules; 2023 Aug; 56(15):5891-5904. PubMed ID: 37576476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the phase behavior of coacervate-driven self-assembly in diblock copolyelectrolytes.
    Ong GMC; Sing CE
    Soft Matter; 2019 Jun; 15(25):5116-5127. PubMed ID: 31188388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-healing fish gelatin/sodium montmorillonite biohybrid coacervates: structural and rheological characterization.
    Qazvini NT; Bolisetty S; Adamcik J; Mezzenga R
    Biomacromolecules; 2012 Jul; 13(7):2136-47. PubMed ID: 22642874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of fish gelatin-gum arabic complex coacervates as influenced by phase separation temperature.
    Anvari M; Pan CH; Yoon WB; Chung D
    Int J Biol Macromol; 2015 Aug; 79():894-902. PubMed ID: 26054661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological and Microstructural Characteristics of Canola Protein Isolate-Chitosan Complex Coacervates.
    Chang PG; Gupta R; Timilsena YP
    J Food Sci; 2019 May; 84(5):1104-1112. PubMed ID: 30994940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition and structure of whey protein/gum arabic coacervates.
    Weinbreck F; Tromp RH; de Kruif CG
    Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the modern theory of polymeric complex coacervation.
    Sing CE
    Adv Colloid Interface Sci; 2017 Jan; 239():2-16. PubMed ID: 27161661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of bovine β-lactoglobulin-lactoferrin coacervates.
    Kizilay E; Seeman D; Yan Y; Du X; Dubin PL; Donato-Capel L; Bovetto L; Schmitt C
    Soft Matter; 2014 Oct; 10(37):7262-8. PubMed ID: 25099892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic strength and hydrogen bonding effects on whey protein isolate-flaxseed gum coacervate rheology.
    Liu J; Shim YY; Reaney MJT
    Food Sci Nutr; 2020 Apr; 8(4):2102-2111. PubMed ID: 32328277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in the science of complex coacervation.
    Sing CE; Perry SL
    Soft Matter; 2020 Mar; 16(12):2885-2914. PubMed ID: 32134099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.
    Boral S; Bohidar HB
    J Phys Chem B; 2010 Sep; 114(37):12027-35. PubMed ID: 20809576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Strength Dependence of the Complex Coacervation between Lactoferrin and β-Lactoglobulin.
    Soussi Hachfi R; Hamon P; Rousseau F; Famelart MH; Bouhallab S
    Foods; 2023 Mar; 12(5):. PubMed ID: 36900563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.