These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27634181)

  • 1. Long-term exposure to microgravity impairs vestibulo-cardiovascular reflex.
    Morita H; Abe C; Tanaka K
    Sci Rep; 2016 Sep; 6():33405. PubMed ID: 27634181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galvanic vestibular stimulation counteracts hypergravity-induced plastic alteration of vestibulo-cardiovascular reflex in rats.
    Abe C; Tanaka K; Awazu C; Morita H
    J Appl Physiol (1985); 2009 Oct; 107(4):1089-94. PubMed ID: 19679746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vestibular system plays a significant role in arterial pressure control during head-up tilt in young subjects.
    Tanaka K; Abe C; Awazu C; Morita H
    Auton Neurosci; 2009 Jun; 148(1-2):90-6. PubMed ID: 19375393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the vestibular system in the arterial pressure response to parabolic-flight-induced gravitational changes in human subjects.
    Iwata C; Abe C; Tanaka K; Morita H
    Neurosci Lett; 2011 May; 495(2):121-5. PubMed ID: 21440600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RR interval variability during galvanic vestibular stimulation correlates with arterial pressure upon head-up tilt.
    Tanaka K; Ito Y; Ikeda M; Katafuchi T
    Auton Neurosci; 2014 Oct; 185():100-6. PubMed ID: 24783995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong galvanic vestibular stimulation obscures arterial pressure response to gravitational change in conscious rats.
    Abe C; Tanaka K; Awazu C; Morita H
    J Appl Physiol (1985); 2008 Jan; 104(1):34-40. PubMed ID: 17916676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsensory galvanic vestibular stimulation augments arterial pressure control upon head-up tilt in human subjects.
    Tanaka K; Abe C; Sakaida Y; Aoki M; Iwata C; Morita H
    Auton Neurosci; 2012 Jan; 166(1-2):66-71. PubMed ID: 22088942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomic neural functions in space.
    Mano T
    Curr Pharm Biotechnol; 2005 Aug; 6(4):319-24. PubMed ID: 16101470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sympathetic vasoconstriction and orthostatic intolerance after simulated microgravity.
    Kamiya A; Michikami D; Fu Q; Iwase S; Mano T
    J Gravit Physiol; 1999 Jul; 6(1):P101-2. PubMed ID: 11542976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibular and Cardiovascular Responses After Long-Duration Spaceflight.
    Deshpande N; Laurie SS; Lee SMC; Miller CA; Mulavara AP; Peters BT; Reschke MF; Stenger MB; Taylor LC; Wood SJ; Clément GR; Bloomberg JJ
    Aerosp Med Hum Perform; 2020 Aug; 91(8):621-627. PubMed ID: 32693869
    [No Abstract]   [Full Text] [Related]  

  • 11. Human vagal baroreflex mechanisms in space.
    Eckberg DL; Halliwill JR; Beightol LA; Brown TE; Taylor JA; Goble R
    J Physiol; 2010 Apr; 588(Pt 7):1129-38. PubMed ID: 20156846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a vestibulo-cardiac reflex in man.
    Radtke A; Popov K; Bronstein AM; Gresty MA
    Lancet; 2000 Aug; 356(9231):736-7. PubMed ID: 11085696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation.
    Moore ST; MacDougall HG; Peters BT; Bloomberg JJ; Curthoys IS; Cohen HS
    Exp Brain Res; 2006 Oct; 174(4):647-59. PubMed ID: 16763834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of post-flight orthostatic intolerance.
    Blomqvist CG; Buckey JC; Gaffney FA; Lane LD; Levine BD; Watenpaugh DE
    J Gravit Physiol; 1994 May; 1(1):P122-4. PubMed ID: 11538739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory modulation of human autonomic function: long-term neuroplasticity in space.
    Eckberg DL; Diedrich A; Cooke WH; Biaggioni I; Buckey JC; Pawelczyk JA; Ertl AC; Cox JF; Kuusela TA; Tahvanainen KU; Mano T; Iwase S; Baisch FJ; Levine BD; Adams-Huet B; Robertson D; Blomqvist CG
    J Physiol; 2016 Oct; 594(19):5629-46. PubMed ID: 27029027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight.
    Verheyden B; Beckers F; Couckuyt K; Liu J; Aubert AE
    Acta Physiol (Oxf); 2007 Dec; 191(4):297-308. PubMed ID: 17784903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system.
    Yates BJ; Kerman IA
    Brain Res Brain Res Rev; 1998 Nov; 28(1-2):73-82. PubMed ID: 9795146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight.
    Hallgren E; Kornilova L; Fransen E; Glukhikh D; Moore ST; Clément G; Van Ombergen A; MacDougall H; Naumov I; Wuyts FL
    J Neurophysiol; 2016 Jun; 115(6):3045-51. PubMed ID: 27009158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular Counter Rolling in Astronauts After Short- and Long-Duration Spaceflight.
    Reschke MF; Wood SJ; Clément G
    Sci Rep; 2018 May; 8(1):7747. PubMed ID: 29773841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of adaptive changes of vestibular system on cardiovascular regulation and orthostatic tolerance].
    Wang LJ; Liu ZQ; He M; Ren W
    Space Med Med Eng (Beijing); 2001 Jun; 14(3):225-9. PubMed ID: 11892740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.