These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 27634261)
1. On the (N, Z) dependence of the second-order Møller-Plesset correlation energies for closed-shell atomic systems. Słupski R; Jankowski K; Flores JR J Chem Phys; 2016 Sep; 145(10):104308. PubMed ID: 27634261 [TBL] [Abstract][Full Text] [Related]
2. When does the non-variational nature of second-order Møller-Plesset energies manifest itself? All-electron correlation energies for open-shell atoms from K to Br. McCarthy SP; Thakkar AJ J Chem Phys; 2012 Feb; 136(5):054107. PubMed ID: 22320725 [TBL] [Abstract][Full Text] [Related]
3. Accurate all-electron correlation energies for the closed-shell atoms from Ar to Rn and their relationship to the corresponding MP2 correlation energies. McCarthy SP; Thakkar AJ J Chem Phys; 2011 Jan; 134(4):044102. PubMed ID: 21280682 [TBL] [Abstract][Full Text] [Related]
4. Towards benchmark second-order correlation energies for large atoms: Zn2+ revisited. Flores JR; Słupski R; Jankowski K; Malinowski P J Chem Phys; 2004 Dec; 121(24):12334-44. PubMed ID: 15606252 [TBL] [Abstract][Full Text] [Related]
5. Analytic energy gradient in combined second-order Møller-Plesset perturbation theory and polarizable force field calculation. Li H J Phys Chem A; 2011 Oct; 115(42):11824-31. PubMed ID: 21905697 [TBL] [Abstract][Full Text] [Related]
6. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory. Bozkaya U J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413 [TBL] [Abstract][Full Text] [Related]
7. Basis set limits of the second order Moller-Plesset correlation energies of water, methane, acetylene, ethylene, and benzene. Yamaki D; Koch H; Ten-no S J Chem Phys; 2007 Oct; 127(14):144104. PubMed ID: 17935383 [TBL] [Abstract][Full Text] [Related]
8. A Resolution-Of-The-Identity Implementation of the Local Triatomics-In-Molecules Model for Second-Order Møller-Plesset Perturbation Theory with Application to Alanine Tetrapeptide Conformational Energies. DiStasio RA; Jung Y; Head-Gordon M J Chem Theory Comput; 2005 Sep; 1(5):862-76. PubMed ID: 26641903 [TBL] [Abstract][Full Text] [Related]
9. Second-order Møller-Plesset perturbation theory applied to extended systems. II. Structural and energetic properties. Grüneis A; Marsman M; Kresse G J Chem Phys; 2010 Aug; 133(7):074107. PubMed ID: 20726635 [TBL] [Abstract][Full Text] [Related]
10. An efficient atomic orbital based second-order Møller-Plesset gradient program. Saebø S; Baker J; Wolinski K; Pulay P J Chem Phys; 2004 Jun; 120(24):11423-31. PubMed ID: 15268176 [TBL] [Abstract][Full Text] [Related]
11. Scalable Electron Correlation Methods. 6. Local Spin-Restricted Open-Shell Second-Order Møller-Plesset Perturbation Theory Using Pair Natural Orbitals: PNO-RMP2. Krause C; Werner HJ J Chem Theory Comput; 2019 Feb; 15(2):987-1005. PubMed ID: 30571916 [TBL] [Abstract][Full Text] [Related]
12. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria. Doser B; Lambrecht DS; Kussmann J; Ochsenfeld C J Chem Phys; 2009 Feb; 130(6):064107. PubMed ID: 19222267 [TBL] [Abstract][Full Text] [Related]
13. Orbital-optimized MP2.5 and its analytic gradients: approaching CCSD(T) quality for noncovalent interactions. Bozkaya U; Sherrill CD J Chem Phys; 2014 Nov; 141(20):204105. PubMed ID: 25429931 [TBL] [Abstract][Full Text] [Related]
14. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity. Jiang H; Engel E J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465 [TBL] [Abstract][Full Text] [Related]
15. Accurate Open-Shell Noncovalent Interaction Energies from the Orbital-Optimized Møller-Plesset Perturbation Theory: Achieving CCSD Quality at the MP2 Level by Orbital Optimization. Soydaş E; Bozkaya U J Chem Theory Comput; 2013 Nov; 9(11):4679-83. PubMed ID: 26583387 [TBL] [Abstract][Full Text] [Related]
16. An efficient parallel algorithm for the calculation of unrestricted canonical MP2 energies. Baker J; Wolinski K J Comput Chem; 2011 Nov; 32(15):3304-12. PubMed ID: 21953563 [TBL] [Abstract][Full Text] [Related]
17. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory. Bozkaya U J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337 [TBL] [Abstract][Full Text] [Related]
18. On the accuracy of DFT-SAPT, MP2, SCS-MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C(60) fullerene with a rare gas atom. Hesselmann A; Korona T Phys Chem Chem Phys; 2011 Jan; 13(2):732-43. PubMed ID: 21046038 [TBL] [Abstract][Full Text] [Related]
19. Attenuating Away the Errors in Inter- and Intramolecular Interactions from Second-Order Møller-Plesset Calculations in the Small Aug-cc-pVDZ Basis Set. Goldey M; Head-Gordon M J Phys Chem Lett; 2012 Dec; 3(23):3592-8. PubMed ID: 26290993 [TBL] [Abstract][Full Text] [Related]
20. Z-dependence of mean excitation energies for second and third row atoms and their ions. Sauer SPA; Sabin JR; Oddershede J J Chem Phys; 2018 May; 148(17):174307. PubMed ID: 29739214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]