BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27634414)

  • 1. Chromatin remodeling during the in vivo glial differentiation in early Drosophila embryos.
    Ye Y; Gu L; Chen X; Shi J; Zhang X; Jiang C
    Sci Rep; 2016 Sep; 6():33422. PubMed ID: 27634414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin remodeling during in vivo neural stem cells differentiating to neurons in early Drosophila embryos.
    Ye Y; Li M; Gu L; Chen X; Shi J; Zhang X; Jiang C
    Cell Death Differ; 2017 Mar; 24(3):409-420. PubMed ID: 27858939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H3K27me3 Signal in the Cis Regulatory Elements Reveals the Differentiation Potential of Progenitors During Drosophila Neuroglial Development.
    Chen X; Ye Y; Gu L; Sun J; Du Y; Liu WJ; Li W; Zhang X; Jiang C
    Genomics Proteomics Bioinformatics; 2019 Jun; 17(3):297-304. PubMed ID: 31195140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosome eviction along with H3K9ac deposition enhances Sox2 binding during human neuroectodermal commitment.
    Du Y; Liu Z; Cao X; Chen X; Chen Z; Zhang X; Zhang X; Jiang C
    Cell Death Differ; 2017 Jun; 24(6):1121-1131. PubMed ID: 28475175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of missense alleles of the glial cells missing gene of Drosophila.
    Jones BW
    Genesis; 2014 Oct; 52(10):864-9. PubMed ID: 25044731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gcm/Glide-dependent conversion into glia depends on neural stem cell age, but not on division, triggering a chromatin signature that is conserved in vertebrate glia.
    Flici H; Erkosar B; Komonyi O; Karatas OF; Laneve P; Giangrande A
    Development; 2011 Oct; 138(19):4167-78. PubMed ID: 21852399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin.
    Völker-Albert MC; Pusch MC; Fedisch A; Schilcher P; Schmidt A; Imhof A
    Mol Cell Proteomics; 2016 Mar; 15(3):945-59. PubMed ID: 26811354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The early life of a fly glial cell.
    Altenhein B; Cattenoz PB; Giangrande A
    Wiley Interdiscip Rev Dev Biol; 2016; 5(1):67-84. PubMed ID: 26224590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in DNA Damage by MYCN Knockdown Through Regulating Nucleosome Organization and Chromatin State in Neuroblastoma.
    Hu X; Zheng W; Zhu Q; Gu L; Du Y; Han Z; Zhang X; Carter DR; Cheung BB; Qiu A; Jiang C
    Front Genet; 2019; 10():684. PubMed ID: 31396265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and cytological analysis of Drosophila chromatin-remodeling factors.
    Corona DF; Armstrong JA; Tamkun JW
    Methods Enzymol; 2004; 377():70-85. PubMed ID: 14979019
    [No Abstract]   [Full Text] [Related]  

  • 11. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally distinct patterns of nucleosome remodeling at enhancers in glucocorticoid-treated acute lymphoblastic leukemia.
    Wu JN; Pinello L; Yissachar E; Wischhusen JW; Yuan GC; Roberts CWM
    Epigenetics Chromatin; 2015; 8():53. PubMed ID: 26633995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeadEasy Mito-Glia: automatic counting of mitotic cells and glial cells in Drosophila.
    Forero MG; Learte AR; Cartwright S; Hidalgo A
    PLoS One; 2010 May; 5(5):e10557. PubMed ID: 20479944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin assembly using Drosophila systems.
    Fyodorov DV; Levenstein ME
    Curr Protoc Mol Biol; 2002 May; Chapter 21():Unit 21.7. PubMed ID: 18265309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.
    Wu X; Liu H; Liu H; Su J; Lv J; Cui Y; Wang F; Zhang Y
    Gene; 2013 Nov; 530(1):8-18. PubMed ID: 23958656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF.
    Hainer SJ; Gu W; Carone BR; Landry BD; Rando OJ; Mello CC; Fazzio TG
    Genes Dev; 2015 Feb; 29(4):362-78. PubMed ID: 25691467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.
    Viktorin G; Riebli N; Popkova A; Giangrande A; Reichert H
    Dev Biol; 2011 Aug; 356(2):553-65. PubMed ID: 21708145
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Crews ST
    Genetics; 2019 Dec; 213(4):1111-1144. PubMed ID: 31796551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of chromatin assembly extracts from preblastoderm Drosophila embryos.
    Bonte E; Becker PB
    Methods Mol Biol; 2009; 523():1-10. PubMed ID: 19381942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identity, origin, and migration of peripheral glial cells in the Drosophila embryo.
    von Hilchen CM; Beckervordersandforth RM; Rickert C; Technau GM; Altenhein B
    Mech Dev; 2008; 125(3-4):337-52. PubMed ID: 18077143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.