BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 27634497)

  • 1. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization.
    Varman AM; He L; Follenfant R; Wu W; Wemmer S; Wrobel SA; Tang YJ; Singh S
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5802-E5811. PubMed ID: 27634497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Catabolic System of Acetovanillone and Acetosyringone in
    Higuchi Y; Kamimura N; Takenami H; Kikuiri Y; Yasuta C; Tanatani K; Shobuda T; Otsuka Y; Nakamura M; Sonoki T; Masai E
    Appl Environ Microbiol; 2022 Aug; 88(16):e0072422. PubMed ID: 35938864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methoxyl groups of lignin are essential carbon donors in C1 metabolism of Sphingobium sp. SYK-6.
    Sonoki T; Masai E; Sato K; Kajita S; Katayama Y
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S98-102. PubMed ID: 19718680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DdvK, a Novel Major Facilitator Superfamily Transporter Essential for 5,5'-Dehydrodivanillate Uptake by Sphingobium sp. Strain SYK-6.
    Mori K; Niinuma K; Fujita M; Kamimura N; Masai E
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30120118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 6. Toward engineering
    Wu W; Liu F; Singh S
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2970-2975. PubMed ID: 29500185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin.
    Johnson CW; Beckham GT
    Metab Eng; 2015 Mar; 28():240-247. PubMed ID: 25617773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6.
    Bleem A; Kato R; Kellermyer ZA; Katahira R; Miyamoto M; Niinuma K; Kamimura N; Masai E; Beckham GT
    Cell Rep; 2023 Aug; 42(8):112847. PubMed ID: 37515767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth.
    Wilkes RA; Waldbauer J; Aristilde L
    mBio; 2021 Dec; 12(6):e0325921. PubMed ID: 34903058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoinversion via Alcohol Dehydrogenases Enables Complete Catabolism of β-1-Type Lignin-Derived Aromatic Isomers.
    Kato R; Maekawa K; Kobayashi S; Hishiyama S; Katahira R; Nambo M; Higuchi Y; Kuatsjah E; Beckham GT; Kamimura N; Masai E
    Appl Environ Microbiol; 2023 Jun; 89(6):e0017123. PubMed ID: 37184397
    [No Abstract]   [Full Text] [Related]  

  • 12. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic conversion of lignin into renewable chemicals.
    Bugg TD; Rahmanpour R
    Curr Opin Chem Biol; 2015 Dec; 29():10-7. PubMed ID: 26121945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1.
    Dos Santos Melo-Nascimento AO; Mota Moitinho Sant Anna B; Gonçalves CC; Santos G; Noronha E; Parachin N; de Abreu Roque MR; Bruce T
    PLoS One; 2020; 15(12):e0243739. PubMed ID: 33351813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the metabolic distribution of vanillin in Rhodococcus opacus during lignin valorization.
    Zhou H; Xu Z; Cai C; Li J; Jin M
    Bioresour Technol; 2022 Mar; 347():126348. PubMed ID: 34798253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation--a review].
    Zhang X; Peng X; Masai E
    Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):854-67. PubMed ID: 25345016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of a new O-demethylase from Sphingobium sp. strain SYK-6.
    Harada A; Kamimura N; Takeuchi K; Yu HY; Masai E; Senda T
    FEBS J; 2017 Jun; 284(12):1855-1867. PubMed ID: 28429420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin.
    Shimizu M; Yuda N; Nakamura T; Tanaka H; Wariishi H
    Proteomics; 2005 Oct; 5(15):3919-31. PubMed ID: 16217726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the Gene Responsible for Lignin-Derived Low-Molecular-Weight Compound Catabolism in
    Hirose J; Tsukimata R; Miyatake M; Yokoi H
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33260964
    [No Abstract]   [Full Text] [Related]  

  • 20. An alkaline active feruloyl-CoA synthetase from soil metagenome as a potential key enzyme for lignin valorization strategies.
    Sodré V; Araujo JN; Gonçalves TA; Vilela N; Braz ASK; Franco TT; de Oliveira Neto M; Damasio ARL; Garcia W; Squina FM
    PLoS One; 2019; 14(2):e0212629. PubMed ID: 30802241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.