These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 27634528)

  • 1. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.
    Boll M; Hilker TA; Salomon G; Omran A; Nespolo J; Pollet L; Bloch I; Gross C
    Science; 2016 Sep; 353(6305):1257-60. PubMed ID: 27634528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Khatami E; Trivedi N; Paiva T; Rigol M; Zwierlein MW
    Science; 2016 Sep; 353(6305):1260-4. PubMed ID: 27634529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of incommensurate magnetism in Hubbard chains.
    Salomon G; Koepsell J; Vijayan J; Hilker TA; Nespolo J; Pollet L; Bloch I; Gross C
    Nature; 2019 Jan; 565(7737):56-60. PubMed ID: 30542155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-imbalance in a 2D Fermi-Hubbard system.
    Brown PT; Mitra D; Guardado-Sanchez E; Schauß P; Kondov SS; Khatami E; Paiva T; Trivedi N; Huse DA; Bakr WS
    Science; 2017 Sep; 357(6358):1385-1388. PubMed ID: 28963252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator.
    Xu M; Kendrick LH; Kale A; Gang Y; Ji G; Scalettar RT; Lebrat M; Greiner M
    Nature; 2023 Aug; 620(7976):971-976. PubMed ID: 37532942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model.
    Parsons MF; Mazurenko A; Chiu CS; Ji G; Greif D; Greiner M
    Science; 2016 Sep; 353(6305):1253-6. PubMed ID: 27634527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity.
    Paiva T; Scalettar R; Randeria M; Trivedi N
    Phys Rev Lett; 2010 Feb; 104(6):066406. PubMed ID: 20366841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators.
    Hilker TA; Salomon G; Grusdt F; Omran A; Boll M; Demler E; Bloch I; Gross C
    Science; 2017 Aug; 357(6350):484-487. PubMed ID: 28774925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum State Engineering of a Hubbard System with Ultracold Fermions.
    Chiu CS; Ji G; Mazurenko A; Greif D; Greiner M
    Phys Rev Lett; 2018 Jun; 120(24):243201. PubMed ID: 29956952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of 2D Fermionic Mott Insulators of ^{40}K with Single-Site Resolution.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Zwierlein MW
    Phys Rev Lett; 2016 Jun; 116(23):235301. PubMed ID: 27341242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms.
    Gall M; Wurz N; Samland J; Chan CF; Köhl M
    Nature; 2021 Jan; 589(7840):40-43. PubMed ID: 33408376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of a Fermi-Hubbard Optical Tweezer Array.
    Spar BM; Guardado-Sanchez E; Chi S; Yan ZZ; Bakr WS
    Phys Rev Lett; 2022 Jun; 128(22):223202. PubMed ID: 35714242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiferromagnetic phase transition in a 3D fermionic Hubbard model.
    Shao HJ; Wang YX; Zhu DZ; Zhu YS; Sun HN; Chen SY; Zhang C; Fan ZJ; Deng Y; Yao XC; Chen YA; Pan JW
    Nature; 2024 Jul; ():. PubMed ID: 38987606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices.
    Trotzky S; Cheinet P; Fölling S; Feld M; Schnorrberger U; Rey AM; Polkovnikov A; Demler EA; Lukin MD; Bloch I
    Science; 2008 Jan; 319(5861):295-9. PubMed ID: 18096767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermions in 3D optical lattices: cooling protocol to obtain antiferromagnetism.
    Paiva T; Loh YL; Randeria M; Scalettar RT; Trivedi N
    Phys Rev Lett; 2011 Aug; 107(8):086401. PubMed ID: 21929182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
    Hensgens T; Fujita T; Janssen L; Li X; Van Diepen CJ; Reichl C; Wegscheider W; Das Sarma S; Vandersypen LMK
    Nature; 2017 Aug; 548(7665):70-73. PubMed ID: 28770852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-range quantum magnetism of ultracold fermions in an optical lattice.
    Greif D; Uehlinger T; Jotzu G; Tarruell L; Esslinger T
    Science; 2013 Jun; 340(6138):1307-10. PubMed ID: 23704375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics and magnetic properties of the anisotropic 3D Hubbard model.
    Imriška J; Iazzi M; Wang L; Gull E; Greif D; Uehlinger T; Jotzu G; Tarruell L; Esslinger T; Troyer M
    Phys Rev Lett; 2014 Mar; 112(11):115301. PubMed ID: 24702384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.