These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 27634528)

  • 21. Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model.
    Kim AJ; Simkovic F; Kozik E
    Phys Rev Lett; 2020 Mar; 124(11):117602. PubMed ID: 32242729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices.
    Mazzucchi G; Caballero-Benitez SF; Mekhov IB
    Sci Rep; 2016 Aug; 6():31196. PubMed ID: 27510369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antiferromagnetic Correlations in Two-Dimensional Fermionic Mott-Insulating and Metallic Phases.
    Drewes JH; Miller LA; Cocchi E; Chan CF; Wurz N; Gall M; Pertot D; Brennecke F; Köhl M
    Phys Rev Lett; 2017 Apr; 118(17):170401. PubMed ID: 28498688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping
    Jiang HC; Devereaux TP
    Science; 2019 Sep; 365(6460):1424-1428. PubMed ID: 31604270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices.
    Greif D; Jotzu G; Messer M; Desbuquois R; Esslinger T
    Phys Rev Lett; 2015 Dec; 115(26):260401. PubMed ID: 26764974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Adiabatic Doping with Incommensurate Optical Lattices.
    Lin J; Nan J; Luo Y; Yao XC; Li X
    Phys Rev Lett; 2019 Dec; 123(23):233603. PubMed ID: 31868469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains.
    Vijayan J; Sompet P; Salomon G; Koepsell J; Hirthe S; Bohrdt A; Grusdt F; Bloch I; Gross C
    Science; 2020 Jan; 367(6474):186-189. PubMed ID: 31919220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong antiferromagnetic correlation effects on the momentum distribution function of the Hubbard model.
    Avella A; Mancini F
    J Phys Condens Matter; 2009 Jun; 21(25):254209. PubMed ID: 21828433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation spectroscopy and dynamics of double occupancies in a fermionic Mott insulator.
    Sensarma R; Pekker D; Lukin MD; Demler E
    Phys Rev Lett; 2009 Jul; 103(3):035303. PubMed ID: 19659291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-standard Hubbard models in optical lattices: a review.
    Dutta O; Gajda M; Hauke P; Lewenstein M; Lühmann DS; Malomed BA; Sowiński T; Zakrzewski J
    Rep Prog Phys; 2015 Jun; 78(6):066001. PubMed ID: 26023844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cold attractive spin polarized Fermi lattice gases and the doped positive U Hubbard model.
    Moreo A; Scalapino DJ
    Phys Rev Lett; 2007 May; 98(21):216402. PubMed ID: 17677791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive study of the spin-charge interplay in antiferromagnetic La(2-x)Sr(x)CuO4.
    Drachuck G; Razzoli E; Bazalitski G; Kanigel A; Niedermayer C; Shi M; Keren A
    Nat Commun; 2014 Feb; 5():3390. PubMed ID: 24572737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strongly correlated Fermions strongly coupled to light.
    Roux K; Konishi H; Helson V; Brantut JP
    Nat Commun; 2020 Jun; 11(1):2974. PubMed ID: 32532985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spin transport in a Mott insulator of ultracold fermions.
    Nichols MA; Cheuk LW; Okan M; Hartke TR; Mendez E; Senthil T; Khatami E; Zhang H; Zwierlein MW
    Science; 2019 Jan; 363(6425):383-387. PubMed ID: 30523079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.
    Bonnes L; Hazzard KR; Manmana SR; Rey AM; Wessel S
    Phys Rev Lett; 2012 Nov; 109(20):205305. PubMed ID: 23215502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice.
    Jördens R; Tarruell L; Greif D; Uehlinger T; Strohmaier N; Moritz H; Esslinger T; De Leo L; Kollath C; Georges A; Scarola V; Pollet L; Burovski E; Kozik E; Troyer M
    Phys Rev Lett; 2010 May; 104(18):180401. PubMed ID: 20482156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antiferromagnetic order driven chiral topological spin density waves on the repulsive Haldane-Hubbard model on square lattices.
    Wu YJ; Li N; He J; Kou SP
    J Phys Condens Matter; 2016 Mar; 28(11):115602. PubMed ID: 26902387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Equation of State of the Two-Dimensional Hubbard Model.
    Cocchi E; Miller LA; Drewes JH; Koschorreck M; Pertot D; Brennecke F; Köhl M
    Phys Rev Lett; 2016 Apr; 116(17):175301. PubMed ID: 27176527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudogap and antiferromagnetic correlations in the hubbard model.
    Macridin A; Jarrell M; Maier T; Kent PR; D'Azevedo E
    Phys Rev Lett; 2006 Jul; 97(3):036401. PubMed ID: 16907520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pomeranchuk cooling of SU(2N) ultracold fermions in optical lattices.
    Cai Z; Hung HH; Wang L; Zheng D; Wu C
    Phys Rev Lett; 2013 May; 110(22):220401. PubMed ID: 23767701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.