BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 2763464)

  • 1. What is the potential of avirulent influenza viruses to complement a cleavable hemagglutinin and generate virulent strains?
    Webster RG; Kawaoka Y; Bean WJ
    Virology; 1989 Aug; 171(2):484-92. PubMed ID: 2763464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain.
    Kawaoka Y; Nestorowicz A; Alexander DJ; Webster RG
    Virology; 1987 May; 158(1):218-27. PubMed ID: 3576972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of the hemagglutinin genes of Australian H7N7 influenza viruses: role of passerine birds in maintenance or transmission?
    Nestorowicz A; Kawaoka Y; Bean WJ; Webster RG
    Virology; 1987 Oct; 160(2):411-8. PubMed ID: 3660587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the A/Chicken/Pennsylvania/83 (H5N2) influenza virus.
    Kawaoka Y; Webster RG
    Virology; 1985 Oct; 146(1):130-7. PubMed ID: 4036005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?
    Kawaoka Y; Naeve CW; Webster RG
    Virology; 1984 Dec; 139(2):303-16. PubMed ID: 6516214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular changes in A/Chicken/Pennsylvania/83 (H5N2) influenza virus associated with acquisition of virulence.
    Webster RG; Kawaoka Y; Bean WJ
    Virology; 1986 Mar; 149(2):165-73. PubMed ID: 3946082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature.
    Bean WJ; Kawaoka Y; Wood JM; Pearson JE; Webster RG
    J Virol; 1985 Apr; 54(1):151-60. PubMed ID: 3973976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico.
    Horimoto T; Rivera E; Pearson J; Senne D; Krauss S; Kawaoka Y; Webster RG
    Virology; 1995 Oct; 213(1):223-30. PubMed ID: 7483266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of a potentially pathogenic H5N2 influenza virus in chickens.
    Saito T; Horimoto T; Kawaoka Y; Senne DA; Webster RG
    Virology; 1994 Jun; 201(2):277-84. PubMed ID: 8184538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reassortants with equine 1 (H7N7) influenza virus hemagglutinin in an avian influenza virus genetic background are pathogenic in chickens.
    Banbura MW; Kawaoka Y; Thomas TL; Webster RG
    Virology; 1991 Sep; 184(1):469-71. PubMed ID: 1871981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular changes in virulent mutants arising from avirulent avian influenza viruses during replication in 14-day-old embryonated eggs.
    Horimoto T; Kawaoka Y
    Virology; 1995 Jan; 206(1):755-9. PubMed ID: 7831837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses.
    Yang L; Zhu W; Li X; Bo H; Zhang Y; Zou S; Gao R; Dong J; Zhao X; Chen W; Dong L; Zou X; Xing Y; Wang D; Shu Y
    J Virol; 2017 Mar; 91(5):. PubMed ID: 28003485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence.
    Deshpande KL; Fried VA; Ando M; Webster RG
    Proc Natl Acad Sci U S A; 1987 Jan; 84(1):36-40. PubMed ID: 3467357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir.
    Schäfer JR; Kawaoka Y; Bean WJ; Süss J; Senne D; Webster RG
    Virology; 1993 Jun; 194(2):781-8. PubMed ID: 7684877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do hemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages?
    Röhm C; Horimoto T; Kawaoka Y; Süss J; Webster RG
    Virology; 1995 Jun; 209(2):664-70. PubMed ID: 7778300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of avian influenza A viruses isolated from domestic waterfowl in live-bird markets of Hanoi, Vietnam, preceding fatal H5N1 human infections in 2004.
    Jadhao SJ; Nguyen DC; Uyeki TM; Shaw M; Maines T; Rowe T; Smith C; Huynh LP; Nghiem HK; Nguyen DH; Nguyen HK; Nguyen HH; Hoang LT; Nguyen T; Phuong LS; Klimov A; Tumpey TM; Cox NJ; Donis RO; Matsuoka Y; Katz JM
    Arch Virol; 2009; 154(8):1249-61. PubMed ID: 19578928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of reassortant avian influenza A (H11N9) virus in environmental samples from live poultry markets in China.
    Zhang Y; Zou SM; Li XD; Dong LB; Bo H; Gao RB; Wang DY; Shu YL
    Infect Dis Poverty; 2016 Jun; 5(1):59. PubMed ID: 27268229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid substitution at position 44 of matrix protein 2 of an avirulent H5 avian influenza virus is crucial for acquiring the highly pathogenic phenotype in chickens.
    Fujimoto Y; Ito H; Tomita M; Ono E; Usui T; Ito T
    Arch Virol; 2015 Aug; 160(8):2063-70. PubMed ID: 26081872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus.
    Horimoto T; Kawaoka Y
    J Virol; 1994 May; 68(5):3120-8. PubMed ID: 8151777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of clade 2.3.4.4 highly pathogenic H5 avian influenza viruses in ducks and chickens.
    Sun H; Pu J; Hu J; Liu L; Xu G; Gao GF; Liu X; Liu J
    Vet Microbiol; 2016; 182():116-22. PubMed ID: 26711037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.