BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 27634646)

  • 1. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics.
    Puranik AS; Pao LP; White VM; Peppas NA
    Eur J Pharm Biopharm; 2016 Nov; 108():196-213. PubMed ID: 27634646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced molecular design of biopolymers for transmucosal and intracellular delivery of chemotherapeutic agents and biological therapeutics.
    Liechty WB; Caldorera-Moore M; Phillips MA; Schoener C; Peppas NA
    J Control Release; 2011 Oct; 155(2):119-27. PubMed ID: 21699934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycationic nanoparticles synthesized using ARGET ATRP for drug delivery.
    Forbes DC; Creixell M; Frizzell H; Peppas NA
    Eur J Pharm Biopharm; 2013 Aug; 84(3):472-8. PubMed ID: 23396094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents.
    Betancourt T; Pardo J; Soo K; Peppas NA
    J Biomed Mater Res A; 2010 Apr; 93(1):175-88. PubMed ID: 19536838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications.
    Wang Q; Wang Q; Teng W
    Int J Nanomedicine; 2016; 11():131-44. PubMed ID: 26792990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-controlled nanoaggregation in amphiphilic polymer co-networks.
    Longo GS; Olvera de la Cruz M; Szleifer I
    ACS Nano; 2013 Mar; 7(3):2693-704. PubMed ID: 23438375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrophobic starch polymer for nanoparticle-mediated delivery of docetaxel.
    Dandekar P; Jain R; Stauner T; Loretz B; Koch M; Wenz G; Lehr CM
    Macromol Biosci; 2012 Feb; 12(2):184-94. PubMed ID: 22127828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel pH-sensitive physical hydrogels of carboxymethyl scleroglucan.
    Corrente F; Paolicelli P; Matricardi P; Tita B; Vitali F; Casadei MA
    J Pharm Sci; 2012 Jan; 101(1):256-67. PubMed ID: 21953550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery.
    Nabid MR; Omrani I
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():532-7. PubMed ID: 27612744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FRET-based dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier.
    Lu KY; Lin CW; Hsu CH; Ho YC; Chuang EY; Sung HW; Mi FL
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18275-89. PubMed ID: 25260022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs.
    McKenzie M; Betts D; Suh A; Bui K; Kim LD; Cho H
    Molecules; 2015 Nov; 20(11):20397-408. PubMed ID: 26580588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and in vitro evaluation of hydrophilic fenretinide nanoparticles.
    Ledet GA; Graves RA; Glotser EY; Mandal TK; Bostanian LA
    Int J Pharm; 2015 Feb; 479(2):329-37. PubMed ID: 25542987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery.
    Ma S; Zhou J; Wali AR; He Y; Xu X; Tang JZ; Gu Z
    J Mater Sci Mater Med; 2015 Aug; 26(8):219. PubMed ID: 26238777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Strategy for Intestinal Drug Delivery via pH-Responsive and Membrane-Active Nanogels.
    Wang S; Ha Y; Huang X; Chin B; Sim W; Chen R
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36622-36627. PubMed ID: 30300550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery.
    Han J; Wang K; Yang D; Nie J
    Int J Biol Macromol; 2009 Apr; 44(3):229-35. PubMed ID: 19146871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and release of verapamil hydrochloride from polycaprolactone/acrylic acid (PCL/AA) hydrogels.
    Hanif M; Ranjha NM; Shoaib MH; Mudasser J; Yousuf RI; Khan A; Zia-Ul-Haq M
    Pak J Pharm Sci; 2011 Oct; 24(4):503-11. PubMed ID: 21959812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH dependent poly[2-(methacryloyloxyethyl)trimetylammonium chloride-co-methacrylic acid]hydrogels for enhanced targeted delivery of 5-fluorouracil in colon cancer cells.
    Mishra RK; Ramasamy K; Ahmad NA; Eshak Z; Majeed AB
    J Mater Sci Mater Med; 2014 Apr; 25(4):999-1012. PubMed ID: 24398912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization and pH-controllable methotrexate release from biocompatible polymer/silica nanocomposite for anticancer drug delivery.
    Rasouli S; Davaran S; Rasouli F; Mahkam M; Salehi R
    Drug Deliv; 2014 May; 21(3):155-63. PubMed ID: 24107075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.