These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1589 related articles for article (PubMed ID: 27634915)
1. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
2. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Zhao Y; Li Y; Mao S; Sun W; Yao R Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399 [TBL] [Abstract][Full Text] [Related]
3. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Li Z; Huang S; Liu Y; Yao B; Hu T; Shi H; Xie J; Fu X Sci Rep; 2018 May; 8(1):8020. PubMed ID: 29789674 [TBL] [Abstract][Full Text] [Related]
4. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
5. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Song K; Ren B; Zhai Y; Chai W; Huang Y Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234 [TBL] [Abstract][Full Text] [Related]
6. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
7. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
8. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks. Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162 [TBL] [Abstract][Full Text] [Related]
9. ECM Based Bioink for Tissue Mimetic 3D Bioprinting. Nam SY; Park SH Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042 [TBL] [Abstract][Full Text] [Related]
10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
11. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Diamantides N; Wang L; Pruiksma T; Siemiatkoski J; Dugopolski C; Shortkroff S; Kennedy S; Bonassar LJ Biofabrication; 2017 Jul; 9(3):034102. PubMed ID: 28677597 [TBL] [Abstract][Full Text] [Related]
12. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003 [TBL] [Abstract][Full Text] [Related]
13. Study of gelatin as an effective energy absorbing layer for laser bioprinting. Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844 [TBL] [Abstract][Full Text] [Related]
14. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
15. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
17. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. Osidak EO; Karalkin PA; Osidak MS; Parfenov VA; Sivogrivov DE; Pereira FDAS; Gryadunova AA; Koudan EV; Khesuani YD; Кasyanov VA; Belousov SI; Krasheninnikov SV; Grigoriev TE; Chvalun SN; Bulanova EA; Mironov VA; Domogatsky SP J Mater Sci Mater Med; 2019 Mar; 30(3):31. PubMed ID: 30830351 [TBL] [Abstract][Full Text] [Related]
18. Development of a clay based bioink for 3D cell printing for skeletal application. Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691 [TBL] [Abstract][Full Text] [Related]
19. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]