BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 27635308)

  • 1. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals.
    García-de Blas E; Mateo R; Alonso-Alvarez C
    PeerJ; 2016; 4():e2237. PubMed ID: 27635308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary canthaxanthin reduces xanthophyll uptake and red coloration in adult red-legged partridges.
    Alonso-Alvarez C; García-de Blas E; Mateo R
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30224370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of dietary carotenoids, retinoids and tocopherol in the internal tissues of a bird: a hypothesis for the cost of producing colored ornaments.
    García-de Blas E; Mateo R; Alonso-Alvarez C
    Oecologia; 2015 Jan; 177(1):259-71. PubMed ID: 25421097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits.
    Alonso-Alvarez C; Galván I
    PLoS One; 2011 Apr; 6(4):e19403. PubMed ID: 21556328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red coloration varies with dietary carotenoid access and nutritional condition in kittiwakes.
    Leclaire S; Bourret V; Pineaux M; Blanchard P; Danchin E; Hatch SA
    J Exp Biol; 2019 Nov; 222(Pt 21):. PubMed ID: 31597729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.
    McGraw KJ; Toomey MB
    Physiol Biochem Zool; 2010; 83(1):97-109. PubMed ID: 19929687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the red-legged partridge (Alectoris rufa).
    Pérez-Rodríguez L; Viñuela J
    Naturwissenschaften; 2008 Sep; 95(9):821-30. PubMed ID: 18470503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecific variation in dietary carotenoid assimilation in birds: links to phylogeny and color ornamentation.
    McGraw KJ
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Oct; 142(2):245-50. PubMed ID: 16129640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa).
    Perez-Rodriguez L; Mougeot F; Alonso-Alvarez C; Blas J; Viñuela J; Bortolotti GR
    J Exp Biol; 2008 Jul; 211(Pt 13):2155-61. PubMed ID: 18552305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free and esterified carotenoids in ornaments of an avian species: the relationship to color expression and sources of variability.
    García-de Blas E; Mateo R; Viñuela J; Pérez-Rodríguez L; Alonso-Alvarez C
    Physiol Biochem Zool; 2013; 86(5):483-98. PubMed ID: 23995480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of carotenoid pigments and their fatty acid esters in an avian integument combining HPLC-DAD and LC-MS analyses.
    García-de Blas E; Mateo R; Viñuela J; Alonso-Alvarez C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Feb; 879(5-6):341-8. PubMed ID: 21239236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the shared-pathway hypothesis in the carotenoid-based coloration of red crossbills.
    Cantarero A; Mateo R; Camarero PR; Alonso D; Fernandez-Eslava B; Alonso-Alvarez C
    Evolution; 2020 Oct; 74(10):2348-2364. PubMed ID: 32749066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential accumulation and pigmenting ability of dietary carotenoids in colorful finches.
    McGraw KJ; Hill GE; Navara KJ; Parker RS
    Physiol Biochem Zool; 2004; 77(3):484-91. PubMed ID: 15286921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is oxidative status influenced by dietary carotenoid and physical activity after moult in the great tit (Parus major)?
    Vaugoyeau M; Decencière B; Perret S; Karadas F; Meylan S; Biard C
    J Exp Biol; 2015 Jul; 218(Pt 13):2106-15. PubMed ID: 25964421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoid-dependent signals and the evolution of plasma carotenoid levels in birds.
    Simons MJ; Maia R; Leenknegt B; Verhulst S
    Am Nat; 2014 Dec; 184(6):741-51. PubMed ID: 25438174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid-based coloration predicts resistance to oxidative damage during immune challenge.
    Pérez-Rodríguez L; Mougeot F; Alonso-Alvarez C
    J Exp Biol; 2010 May; 213(Pt 10):1685-90. PubMed ID: 20435819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing the carotenoid-based sexual signalling mechanism by altering
    Cantarero A; Andrade P; Carneiro M; Moreno-Borrallo A; Alonso-Alvarez C
    Proc Biol Sci; 2020 Nov; 287(1938):20201067. PubMed ID: 33171089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal effects mediated by antioxidants and the evolution of carotenoid-based signals in birds.
    Biard C; Gil D; Karadaş F; Saino N; Spottiswoode CN; Surai PF; Møller AP
    Am Nat; 2009 Nov; 174(5):696-708. PubMed ID: 19780651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the resource trade-off hypothesis for carotenoid-based signal honesty using genetic variants of the domestic canary.
    Koch RE; Staley M; Kavazis AN; Hasselquist D; Toomey MB; Hill GE
    J Exp Biol; 2019 Mar; 222(Pt 6):. PubMed ID: 30877227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lutein-based plumage coloration in songbirds is a consequence of selective pigment incorporation into feathers.
    McGraw KJ; Beebee MD; Hill GE; Parker RS
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Aug; 135(4):689-96. PubMed ID: 12892761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.