BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 27636026)

  • 1. Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features.
    Kickingereder P; Bonekamp D; Nowosielski M; Kratz A; Sill M; Burth S; Wick A; Eidel O; Schlemmer HP; Radbruch A; Debus J; Herold-Mende C; Unterberg A; Jones D; Pfister S; Wick W; von Deimling A; Bendszus M; Capper D
    Radiology; 2016 Dec; 281(3):907-918. PubMed ID: 27636026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models.
    Kickingereder P; Burth S; Wick A; Götz M; Eidel O; Schlemmer HP; Maier-Hein KH; Wick W; Bendszus M; Radbruch A; Bonekamp D
    Radiology; 2016 Sep; 280(3):880-9. PubMed ID: 27326665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging.
    Ahn SS; Shin NY; Chang JH; Kim SH; Kim EH; Kim DW; Lee SK
    J Neurosurg; 2014 Aug; 121(2):367-73. PubMed ID: 24949678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatic mutations associated with MRI-derived volumetric features in glioblastoma.
    Gutman DA; Dunn WD; Grossmann P; Cooper LA; Holder CA; Ligon KL; Alexander BM; Aerts HJ
    Neuroradiology; 2015 Dec; 57(12):1227-37. PubMed ID: 26337765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The preliminary radiogenomics association between MR perfusion imaging parameters and genomic biomarkers, and their predictive performance of overall survival in patients with glioblastoma.
    Liu X; Mangla R; Tian W; Qiu X; Li D; Walter KA; Ekholm S; Johnson MD
    J Neurooncol; 2017 Dec; 135(3):553-560. PubMed ID: 28889246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma.
    Kickingereder P; Neuberger U; Bonekamp D; Piechotta PL; Götz M; Wick A; Sill M; Kratz A; Shinohara RT; Jones DTW; Radbruch A; Muschelli J; Unterberg A; Debus J; Schlemmer HP; Herold-Mende C; Pfister S; von Deimling A; Wick W; Capper D; Maier-Hein KH; Bendszus M
    Neuro Oncol; 2018 May; 20(6):848-857. PubMed ID: 29036412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility.
    Kim HS; Goh MJ; Kim N; Choi CG; Kim SJ; Kim JH
    Radiology; 2014 Dec; 273(3):831-43. PubMed ID: 24885857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of Recurrent Glioblastoma from Delayed Radiation Necrosis by Using Voxel-based Multiparametric Analysis of MR Imaging Data.
    Yoon RG; Kim HS; Koh MJ; Shim WH; Jung SC; Kim SJ; Kim JH
    Radiology; 2017 Oct; 285(1):206-213. PubMed ID: 28535120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles.
    Ryoo I; Choi SH; Kim JH; Sohn CH; Kim SC; Shin HS; Yeom JA; Jung SC; Lee AL; Yun TJ; Park CK; Park SH
    PLoS One; 2013; 8(8):e71704. PubMed ID: 23977117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Tumors: The Influence of Tumor Type and Routine MR Imaging Characteristics at BOLD Functional MR Imaging in the Primary Motor Gyrus.
    Fraga de Abreu VH; Peck KK; Petrovich-Brennan NM; Woo KM; Holodny AI
    Radiology; 2016 Dec; 281(3):876-883. PubMed ID: 27383533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging.
    Kickingereder P; Wiestler B; Sahm F; Heiland S; Roethke M; Schlemmer HP; Wick W; Bendszus M; Radbruch A
    Radiology; 2014 Sep; 272(3):843-50. PubMed ID: 24814181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging.
    Drabycz S; Roldán G; de Robles P; Adler D; McIntyre JB; Magliocco AM; Cairncross JG; Mitchell JR
    Neuroimage; 2010 Jan; 49(2):1398-405. PubMed ID: 19796694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudoprogression in Patients with Glioblastoma: Assessment by Using Volume-weighted Voxel-based Multiparametric Clustering of MR Imaging Data in an Independent Test Set.
    Park JE; Kim HS; Goh MJ; Kim SJ; Kim JH
    Radiology; 2015 Jun; 275(3):792-802. PubMed ID: 25611736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
    Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y
    Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR Perfusion-derived Hemodynamic Parametric Response Mapping of Bevacizumab Efficacy in Recurrent Glioblastoma.
    Kickingereder P; Radbruch A; Burth S; Wick A; Heiland S; Schlemmer HP; Wick W; Bendszus M; Bonekamp D
    Radiology; 2016 May; 279(2):542-52. PubMed ID: 26579564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of apparent diffusion coefficient values measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed with MS-MLPA in patients with glioblastoma multiforme.
    Sunwoo L; Choi SH; Park CK; Kim JW; Yi KS; Lee WJ; Yoon TJ; Song SW; Kim JE; Kim JY; Kim TM; Lee SH; Kim JH; Sohn CH; Park SH; Kim IH; Chang KH
    J Magn Reson Imaging; 2013 Feb; 37(2):351-8. PubMed ID: 23023975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma.
    Kanas VG; Zacharaki EI; Thomas GA; Zinn PO; Megalooikonomou V; Colen RR
    Comput Methods Programs Biomed; 2017 Mar; 140():249-257. PubMed ID: 28254081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging.
    Chu HH; Choi SH; Ryoo I; Kim SC; Yeom JA; Shin H; Jung SC; Lee AL; Yoon TJ; Kim TM; Lee SH; Park CK; Kim JH; Sohn CH; Park SH; Kim IH
    Radiology; 2013 Dec; 269(3):831-40. PubMed ID: 23771912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T1-Weighted Dynamic Contrast-Enhanced MRI as a Noninvasive Biomarker of Epidermal Growth Factor Receptor vIII Status.
    Arevalo-Perez J; Thomas AA; Kaley T; Lyo J; Peck KK; Holodny AI; Mellinghoff IK; Shi W; Zhang Z; Young RJ
    AJNR Am J Neuroradiol; 2015 Dec; 36(12):2256-61. PubMed ID: 26338913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.