BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27636231)

  • 1. Effects of Desolvating Agent Types, Ratios, and Temperature on Size and Nanostructure of Nanoparticles from α-Lactalbumin and Ovalbumin.
    Etorki AM; Gao M; Sadeghi R; Maldonado-Mejia LF; Kokini JL
    J Food Sci; 2016 Oct; 81(10):E2511-E2520. PubMed ID: 27636231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of different treatments on the ability of α-lactalbumin to form nanoparticles.
    Arroyo-Maya IJ; Rodiles-López JO; Cornejo-Mazón M; Gutiérrez-López GF; Hernández-Arana A; Toledo-Núñez C; Barbosa-Cánovas GV; Flores-Flores JO; Hernández-Sánchez H
    J Dairy Sci; 2012 Nov; 95(11):6204-14. PubMed ID: 22939794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic cross-linking of α-lactalbumin to produce nanoparticles with increased foam stability.
    Dhayal SK; Delahaije RJ; de Vries RJ; Gruppen H; Wierenga PA
    Soft Matter; 2015 Oct; 11(40):7888-98. PubMed ID: 26327613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linoleic acid binding properties of ovalbumin nanoparticles.
    Sponton OE; Perez AA; Carrara CR; Santiago LG
    Colloids Surf B Biointerfaces; 2015 Apr; 128():219-226. PubMed ID: 25701117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism.
    Paik SY; Nguyen HH; Ryu J; Che JH; Kang TS; Lee JK; Song CW; Ko S
    Food Chem; 2013 Nov; 141(2):695-701. PubMed ID: 23790836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Albumin nanoparticles with predictable size by desolvation procedure.
    Storp Bv; Engel A; Boeker A; Ploeger M; Langer K
    J Microencapsul; 2012; 29(2):138-46. PubMed ID: 22329480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally induced aggregates in mixtures of alpha-lactalbumin with ovalbumins from different avian species.
    Sun Y; Hayakawa S
    J Agric Food Chem; 2001 May; 49(5):2511-7. PubMed ID: 11368628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Binary Organic Solvents Together with Emulsifier on Particle Size and In vitro Behavior of Paclitaxel-Encapsulated Polymeric Lipid Nanoparticles.
    Qin S; Sun X; Li F; Yu K; Zhou Y; Liu N; Zhao C; Teng L; Li Y
    Curr Drug Deliv; 2018; 15(7):987-997. PubMed ID: 29268685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Lactalbumin nanoparticles prepared by desolvation and cross-linking: structure and stability of the assembled protein.
    Arroyo-Maya IJ; Hernández-Sánchez H; Jiménez-Cruz E; Camarillo-Cadena M; Hernández-Arana A
    Biophys Chem; 2014; 193-194():27-34. PubMed ID: 25105879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Organic Solvents on the Physicochemical Properties of Human Serum Albumin Nanoparticles.
    Mohammad-Beigi H; Shojaosadati SA; Morshedi D; Mirzazadeh N; Arpanaei A
    Iran J Biotechnol; 2016 Mar; 14(1):45-50. PubMed ID: 28959317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular degradation and distribution of protein-encapsulated amphiphilic poly(amino acid) nanoparticles.
    Akagi T; Shima F; Akashi M
    Biomaterials; 2011 Jul; 32(21):4959-67. PubMed ID: 21482432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of ultra-long stable ovalbumin/sodium carboxymethylcellulose nanoparticle and loading properties of curcumin.
    Niu F; Hu D; Gu F; Du Y; Zhang B; Ma S; Pan W
    Carbohydr Polym; 2021 Nov; 271():118451. PubMed ID: 34364584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple improved desolvation method for the rapid preparation of albumin nanoparticles.
    Jahanban-Esfahlan A; Dastmalchi S; Davaran S
    Int J Biol Macromol; 2016 Oct; 91():703-9. PubMed ID: 27177461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery.
    Wang N; Wu XS
    Pharm Dev Technol; 1997 May; 2(2):135-42. PubMed ID: 9552439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of sunflower protein isolate nanoparticles, and their potential for encapsulation and sustainable release of curcumin.
    Mehryar L; Esmaiili M; Zeynali F; Imani M; Sadeghi R
    Food Chem; 2021 Sep; 355():129572. PubMed ID: 33799269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects.
    Sponton OE; Perez AA; Carrara CR; Santiago LG
    Food Chem; 2016 Nov; 211():819-26. PubMed ID: 27283701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the binding of ZnO nanoparticle on the structure and stability of α-lactalbumin: a comparative study.
    Chakraborti S; Sarwar S; Chakrabarti P
    J Phys Chem B; 2013 Oct; 117(43):13397-408. PubMed ID: 24044753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of α-Lactalbumin Aggregation by Modulation of Temperature and Concentration of Calcium and Cysteine.
    Nielsen LR; Nielsen SB; Zhao Z; Olsen K; Nielsen JH; Lund MN
    J Agric Food Chem; 2018 Jul; 66(27):7110-7120. PubMed ID: 29916707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of self-assembled (-)-epigallocatechin gallate (EGCG) ovalbumin-dextran conjugate nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells.
    Li Z; Gu L
    J Agric Food Chem; 2014 Feb; 62(6):1301-9. PubMed ID: 24446922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Structural and Colloidal Properties of α-Lactalbumin/Chitosan Complexes as a Function of Heating.
    Li Q; Zhao Z
    J Agric Food Chem; 2018 Jan; 66(4):972-978. PubMed ID: 29301069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.