These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27636333)

  • 21. Symmetry-Resolved Two-Magnon Excitations in a Strong Spin-Orbit-Coupled Bilayer Antiferromagnet.
    Li S; Drueke E; Porter Z; Jin W; Lu Z; Smirnov D; Merlin R; Wilson SD; Sun K; Zhao L
    Phys Rev Lett; 2020 Aug; 125(8):087202. PubMed ID: 32909791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnon Spin Relaxation and Spin Hall Effect Due to the Dipolar Interaction in Antiferromagnetic Insulators.
    Shen K
    Phys Rev Lett; 2020 Feb; 124(7):077201. PubMed ID: 32142313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal Hall Effect of Spin Excitations in a Kagome Magnet.
    Hirschberger M; Chisnell R; Lee YS; Ong NP
    Phys Rev Lett; 2015 Sep; 115(10):106603. PubMed ID: 26382691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlocal Drag of Magnons in a Ferromagnetic Bilayer.
    Liu T; Vignale G; Flatté ME
    Phys Rev Lett; 2016 Jun; 116(23):237202. PubMed ID: 27341254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topological valley transport at bilayer graphene domain walls.
    Ju L; Shi Z; Nair N; Lv Y; Jin C; Velasco J; Ojeda-Aristizabal C; Bechtel HA; Martin MC; Zettl A; Analytis J; Wang F
    Nature; 2015 Apr; 520(7549):650-5. PubMed ID: 25901686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum spin-valley Hall effect in AB-stacked bilayer silicene.
    Lee KW; Lee CE
    Sci Rep; 2019 Dec; 9(1):19426. PubMed ID: 31857647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skyrmions and Hall transport.
    Kim BS
    J Phys Condens Matter; 2019 Sep; 31(38):383001. PubMed ID: 31167174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frustrated magnetism. Large thermal Hall conductivity of neutral spin excitations in a frustrated quantum magnet.
    Hirschberger M; Krizan JW; Cava RJ; Ong NP
    Science; 2015 Apr; 348(6230):106-9. PubMed ID: 25838381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topological Magnon Bands in a Kagome Lattice Ferromagnet.
    Chisnell R; Helton JS; Freedman DE; Singh DK; Bewley RI; Nocera DG; Lee YS
    Phys Rev Lett; 2015 Oct; 115(14):147201. PubMed ID: 26551820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin dynamics of antiferromagnetically coupled bilayers-the case of Cr
    Majumdar K; Mahanti SD
    J Phys Condens Matter; 2018 Sep; 30(36):365802. PubMed ID: 30079892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials.
    Wu SC; Shan G; Yan B
    Phys Rev Lett; 2014 Dec; 113(25):256401. PubMed ID: 25554896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulating chiral spin transport with ferroelectric polarization.
    Huang X; Chen X; Li Y; Mangeri J; Zhang H; Ramesh M; Taghinejad H; Meisenheimer P; Caretta L; Susarla S; Jain R; Klewe C; Wang T; Chen R; Hsu CH; Harris I; Husain S; Pan H; Yin J; Shafer P; Qiu Z; Rodrigues DR; Heinonen O; Vasudevan D; Íñiguez J; Schlom DG; Salahuddin S; Martin LW; Analytis JG; Ralph DC; Cheng R; Yao Z; Ramesh R
    Nat Mater; 2024 Jul; 23(7):898-904. PubMed ID: 38622325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zero-Frequency Chiral Magnonic Edge States Protected by Nonequilibrium Topology.
    Gunnink PM; Harms JS; Duine RA; Mook A
    Phys Rev Lett; 2023 Sep; 131(12):126601. PubMed ID: 37802951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Giant magnon spin conductivity in ultrathin yttrium iron garnet films.
    Wei XY; Santos OA; Lusero CHS; Bauer GEW; Ben Youssef J; van Wees BJ
    Nat Mater; 2022 Dec; 21(12):1352-1356. PubMed ID: 36138146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.
    Liu ZX; Normand B
    Phys Rev Lett; 2018 May; 120(18):187201. PubMed ID: 29775347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging chirality in artificial spin ice.
    Branford WR; Ladak S; Read DE; Zeissler K; Cohen LF
    Science; 2012 Mar; 335(6076):1597-600. PubMed ID: 22461605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric field-induced chiral d + id superconductivity in AA-stacked bilayer graphene: a quantum Monte Carlo study.
    Fang SC; Zheng XJ; Lin HQ; Huang ZB
    J Phys Condens Matter; 2021 Jan; 33(2):025601. PubMed ID: 32906113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction driven quantum Hall effect in artificially stacked graphene bilayers.
    Iqbal MZ; Iqbal MW; Siddique S; Khan MF; Ramay SM; Nam J; Kim KS; Eom J
    Sci Rep; 2016 Apr; 6():24815. PubMed ID: 27098387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growing of fixed orientation plane of single crystal using the flux growth technique and ferrimagnetic ordering in Ni3TeO6 of stacked 2D honeycomb rings.
    Sankar R; Shu GJ; Karunakara Moorthy B; Jayavel R; Chou FC
    Dalton Trans; 2013 Aug; 42(29):10439-43. PubMed ID: 23748278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicted Quantum Topological Hall Effect and Noncoplanar Antiferromagnetism in K_{0.5}RhO_{2}.
    Zhou J; Liang QF; Weng H; Chen YB; Yao SH; Chen YF; Dong J; Guo GY
    Phys Rev Lett; 2016 Jun; 116(25):256601. PubMed ID: 27391737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.